Show simple item record

A Base‐Labile Protecting Group (Fluorenylmethoxycarbonyl) for the 5′‐Hydroxy Function of Nucleosides

dc.contributor.authorGait, Michael J.
dc.contributor.authorLehmann, Christian
dc.date.accessioned2018-05-15T20:12:49Z
dc.date.available2018-05-15T20:12:49Z
dc.date.issued2000-02
dc.identifier.citationGait, Michael J.; Lehmann, Christian (2000). "A Base‐Labile Protecting Group (Fluorenylmethoxycarbonyl) for the 5′‐Hydroxy Function of Nucleosides." Current Protocols in Nucleic Acid Chemistry 00(1): 2.4.1-2.4.22.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/143614
dc.description.abstractMany popular synthesis strategies look for appropriate 2′‐O‐protection methods to use in conjunction with 5′‐O‐trityl chemistry. In contrast, this unit describes the use of FMOC as a 5′‐protecting group in conjunction with a ketal‐type 2′‐O‐protecting group, 4‐methoxytetrahydropyran‐4‐yl (MTHP). The synthesis of all four 2′‐O‐MTHP‐5′‐O‐FMOC‐protected ribonucleosides and 5′‐O‐FMOC‐2′‐deoxythymidine is described, as is the preparation of the N‐protected, 2′‐O‐MTHP‐protected starting nucleosides.
dc.publisherWiley Periodicals, Inc.
dc.publisherIRL Press
dc.titleA Base‐Labile Protecting Group (Fluorenylmethoxycarbonyl) for the 5′‐Hydroxy Function of Nucleosides
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143614/1/cpnc0204.pdf
dc.identifier.doi10.1002/0471142700.nc0204s00
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceTi, G.S., Gaffney, B.L., and Jones, R.A. 1982. Transient protection: Efficient one‐flask synthesis of protected deoxynucleosides. J. Am. Chem. Soc. 104: 1316 ‐ 1319.
dc.identifier.citedreferenceJones, R.A. 1984. Preparation of protected deoxyribonucleotides. In Oligonucleotide Synthesis: A Practical Approach ( M.J. Gait, ed.) pp. 23 ‐ 34. IRL Press, Oxford.
dc.identifier.citedreferenceJork, H., Funk, W., Fischer, W., and Wimmer, H. 1990. Thin‐Layer Chromatography, Vol. Ia: Reagents and Detection Methods, pp. 195 ‐ 198. VCH‐Verlagsgesellschaft, Weinheim.
dc.identifier.citedreferenceLehmann, C., Xu, Y.‐Z., Christodoulou, C., Tan, Z.‐K., and Gait, M.J. 1989. Solid‐phase synthesis of oligoribonucleotides using 9‐fluorenylmethoxy‐carbonyl (Fmoc) for 5′‐hydroxyl protection. Nucl. Acids Res. 17: 2379 ‐ 2390.
dc.identifier.citedreferenceLehmann, C., Xu, Y.‐Z., Christodoulou, C., Gait, M.J., Van Meervelt, L., Moore, M., and Kennard, O. 1991. 3′/5′‐Regioselectivity of introduction of the 9‐fluorenylmethoxy‐carbonyl group to 2′‐O‐tetrahydropyran‐2‐yl and 2′‐O‐(4‐methoxytetrahydropyran‐4‐yl)‐nucleosides: Useful intermediates for solid‐phase RNA synthesis. Nucleosides Nucleotides 10: 1599 ‐ 1614.
dc.identifier.citedreferenceMa, Y. and Sonveaux, E. 1987. The 9‐fluorenylmethyloxycarbonyl (Fmoc) group as a 5′‐O base labile protecting group in solid supported oligonucleotide synthesis. Nucleosides Nucleotides 6: 491 ‐ 493.
dc.identifier.citedreferenceMarkiewicz, W.T. and Wiewerowski, M. 1985. Simultaneous protection of 3′‐ and 5′‐hydroxyl groups of nucleosides. In Nucleic Acid Chemistry, Section III: Nucleosides ( L.B. Townsend and R.S. Tipson, eds.) pp. 229 ‐ 231. John Wiley & Sons, New York.
dc.identifier.citedreferenceMcBride, L.J. and Caruthers, M.H. 1983. An investigation of several deoxynucleoside phosphoramidites useful for synthesizing deoxyoligonucleotides. Tetrahedron Lett. 24: 245 ‐ 248.
dc.identifier.citedreferenceMcLaughlin, L.W., Piel, N., and Hellmann, T. 1985. Preparation of protected ribonucleotides suitable for chemical oligoribonucleotide synthesis. Synthesis 1985: 322 ‐ 323.
dc.identifier.citedreferenceNorman, D.G., Reese, C.B., and Serafinowska, H.T. 1984. The protection of 2′‐hydroxy functions in oligoribonucleotide synthesis. Tetrahedron Lett. 25: 3015 ‐ 3018.
dc.identifier.citedreferencePalom, Y., Alazzouzi, E‐M., Gordillo, F., Grandas, A., and Pedroso, E. 1993. An acid‐labile linker for solid‐phase oligoribonucleotide synthesis using Fmoc group for 5′‐hydroxyl protection. Tetrahedron Lett. 34: 2195 ‐ 2198.
dc.identifier.citedreferencePathak, T. and Chattopadhyaya, J. 1985. The 2′‐hydroxyl function assisted cleavage of the internucleotide phosphotriester bond of a ribonucleotide under acidic conditions. Acta Chem. Scand. B39: 799 ‐ 806.
dc.identifier.citedreferencePitsch, S. 1997. An efficient synthesis of enantiomeric ribonucleic acid from D‐glucose. Helv. Chim. Acta 80: 2286 ‐ 2314.
dc.identifier.citedreferenceReese, C.B. and Skone, P.A. 1985. Action of acid on oligoribonucleotide phosphotriester intermediates. Effect of released vicinal hydroxy functions. Nucl. Acids Res. 13: 5215 ‐ 5231.
dc.identifier.citedreferenceReese, C.B., Saffhill, R., and Sulston, J. 1970. 4‐Methoxytetrahydropyran‐4‐yl: A symmetrical alternative to the tetrahydropyranyl group. Tetrahedron 26: 1023 ‐ 1030.
dc.identifier.citedreferenceSchaller, H., Weiman, G., Lerch, B., and Khorana, H.G. 1963. Protected derivatives of deoxyribonucleotides and new syntheses of deoxyribonucleotide‐3′ phosphates. J. Am. Chem. Soc. 85: 3821 ‐ 3827.
dc.identifier.citedreferenceSchwartz, M.E., Breaker, R.R., Asteriadis, G.T., deBear, J.S., and Gough, G.R. 1992. Rapid synthesis of oligoribonucleotides using 2′‐ O ‐( o ‐nitrobenzyloxymethyl)‐protected monomers. Bioorg. Med. Chem. Lett. 2: 1019 ‐ 1024.
dc.identifier.citedreferenceStill, W.C., Kahn, M., and Mitra, A. 1978. Rapid chromatographic technique for preparative separations with moderate resolution. J. Org. Chem. 43: 2923 ‐ 2925.
dc.identifier.citedreferencevan Boom, J.H. and Wreesmann, C.T.J. 1984. Chemical synthesis of small oligoribonucleotides in solution. In Oligonucleotide Synthesis: A Practical Approach ( M.J. Gait, ed.) pp. 153 ‐ 183. IRL Press, Oxford.
dc.identifier.citedreferenceBlackburn, M. and Gait, M.J. (eds.) 1996. Nucleic Acids in Chemistry and Biology. Oxford University Press, New York.
dc.identifier.citedreferenceGait, M.J. (ed.) 1984. Oligonucleotide Synthesis: A Practical Approach, IRL Press, Oxford.
dc.identifier.citedreferenceLehmann et al., 1991. See above.
dc.identifier.citedreferenceAtherton, E. and Sheppard, R.C. 1989. Solid‐Phase Peptide Synthesis: A Practical Approach. IRL Press, Oxford.
dc.identifier.citedreferenceBalgobin, N. and Chattopadhyaya, J.B. 1987. Solid phase synthesis of DNA under a non‐depurinating condition with a base labile 5′‐protecting group (Fmoc) using phosphite‐amidite approach. Nucleosides Nucleotides 6: 461 ‐ 463.
dc.identifier.citedreferenceBergmann, F., Kueng, E., Iaiza, P., and Bannwarth, W. 1995. Allyl as internucleotide protecting group in DNA synthesis to be cleaved off by ammonia. Tetrahedron 51: 6971 ‐ 6976.
dc.identifier.citedreferenceBrown, T., Pritchard, C.E., Turner, G., and Salisbury, S.A. 1989. A new base‐stable linker for solid‐phase oligonucleotide synthesis. J. Chem. Soc., Chem. Commun. 891 ‐ 893.
dc.identifier.citedreferenceBüchi, H. and Khorana, H.G. 1972. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Chemical synthesis of an icosadeoxyribonucleotide corresponding to the nucleotide sequence 31 to 50. J. Mol. Biol. 72: 251 ‐ 288.
dc.identifier.citedreferenceCarpino, L.A. 1987. The 9‐fluorenylmethoxycarbonyl family of base‐sensitive amino‐protecting groups. Acc. Chem. Res. 20: 401 ‐ 407.
dc.identifier.citedreferenceCarpino, L.A. and Han, G.Y. 1970. the 9‐fluorenylmethoxycarbonyl function, a new base‐sensitive amino‐protecting group. J. Am.Chem. Soc. 92: 5748 ‐ 5749.
dc.identifier.citedreferenceCarpino, L.A. and Mansour, E.M.E. 1999. The 2‐methylsulfonyl‐3‐phenyl‐1‐prop‐2‐enyloxycar‐ bonyl (MSPOC) amino‐protecting group. J. Org. Chem. 64: 8399 ‐ 8401.
dc.identifier.citedreferenceChristodoulou, C., Agrawal, S., and Gait, M.J. 1986. Incompatibility of acid‐labile 2′ and 5′ protecting groups for solid‐phase synthesis of oligoribonucleotides. Tetrahedron Lett. 27: 1521 ‐ 1522.
dc.identifier.citedreferenceFromageot, W.P.M., Griffin, B.E., Reese, C.B., and Sulston, J.E. 1967. Monoacylation of ribonucleosides and derivatives via orthoester exchange. Tetrahedron 23: 2315 ‐ 2331.
dc.identifier.citedreferenceFukuda, T., Hamana, T., and Marumoto, R. 1988. Synthesis of RNA oligomers using 9‐fluorenylmethoxycarbonyl (Fmoc) group for 5′‐hydroxyl protection. Nucl. Acids Res. 16: 13 ‐ 16.
dc.identifier.citedreferenceGao, X., Gaffney, B.L., Senior, M., Riddle, R.R., and Jones, R.A. 1985. Methylation of thymine residues during oligonucleotide synthesis. Nucl. Acids Res. 13: 573 ‐ 584.
dc.identifier.citedreferenceGioeli, C. and Chattopadhyaya, J.B. 1982. The fluoren‐9‐ylmethoxycarbonyl group for the protection of hydroxy‐groups; its application in the synthesis of an octathymidylic acid fragment. J. Chem. Soc. Chem.Commun. 1982: 672 ‐ 674.
dc.identifier.citedreferenceHayakawa, Y., Uchiyama, M., Kato, H., and Noyori, R. 1990. Allylic protection of internucleotide linkage. Tetrahedron Lett. 26: 6505 ‐ 6508.
dc.identifier.citedreferenceHunt, B.J. and Ribgy, W. 1967. Short column chromatography. Chem. Ind. 1967: 1868 ‐ 1869.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.