Show simple item record

Engineering Specific Cross‐Links in Nucleic Acids Using Glycol Linkers

dc.contributor.authorO’Dea, Timothy
dc.contributor.authorMcLaughlin, Larry W.
dc.date.accessioned2018-05-15T20:12:57Z
dc.date.available2018-05-15T20:12:57Z
dc.date.issued2000-02
dc.identifier.citationO’Dea, Timothy; McLaughlin, Larry W. (2000). "Engineering Specific Cross‐Links in Nucleic Acids Using Glycol Linkers." Current Protocols in Nucleic Acid Chemistry 00(1): 5.3.1-5.3.8.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/143621
dc.description.abstractOne of the most convenient methods for generating oligonucleotides possessing intra‐ or interstrand cross‐links is through incorporation of oligoethylene glycol bridges by solid‐phase synthesis. The reagents are commercially available or can be synthesized in a few easy synthetic steps. Unlike many other DNA and RNA cross‐links, aspects of the structural and thermodynamic impact of modifying nucleic acids with oligoethylene glycols have been studied. This unit covers protection, phosphitylation, and preparation of the glycol linker for oligonucleotide synthesis.
dc.publisherWiley Periodicals, Inc.
dc.titleEngineering Specific Cross‐Links in Nucleic Acids Using Glycol Linkers
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143621/1/cpnc0503.pdf
dc.identifier.doi10.1002/0471142700.nc0503s00
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceMa, M.Y.X., McCallum, K., Climie, S.C., Kuperman, R., Lin, W.C., Sumner‐Smith, M., and Barnett, R.W. 1993. Design and synthesis of RNA miniduplexes via a synthetic linker approach. 2. Generation of covalently closed, double‐stranded cyclic HIV‐1 TAR RNA analogs with high Tat‐binding affinity. Nucl. Acids Res. 21: 2585 ‐ 9.
dc.identifier.citedreferenceWolfe, S.A. and Verdine, G.L. 1993. Ratcheting torsional stress in duplex DNA. J. Am. Chem. Soc. 115: 12585 ‐ 12586.
dc.identifier.citedreferenceWilliams, D.J. and Hall, K.B. 1996. Thermodynamic comparison of the salt dependence of natural RNA hairpins and RNA hairpins with non‐nucleotide spacers. Biochemistry 35: 14665 ‐ 14670.
dc.identifier.citedreferenceThomson, J.B., Tuschl, T., and Eckstein, F. 1993. Activity of hammerhead ribozymes containing non‐nucleotidic linkers. Nucl. Acids Res. 21: 5600 ‐ 5603.
dc.identifier.citedreferenceRobles, J., Rajur, S.B., and McLaughlin, L.W. 1996. A parallel‐stranded DNA triplex tethering a Hoechst 33258 analogue results in complex stabilization by simultaneous major groove and minor groove binding. J. Am. Chem. Soc 118: 5820 ‐ 5821.
dc.identifier.citedreferenceGoodwin, J.T. and Glick, G.D. 1994. Synthesis of a disulfide stabilized RNA hairpin. Tetrahedron Lett. 35: 1647 ‐ 1650.
dc.identifier.citedreferenceHendry, P., Moghaddam, M.J., McCall, M.J., Jennings, P.A., Ebel, S., and Brown, T. 1994. Using linkers to investigate the spatial separation of the conserved nucleotides A9 and G12 in the hammerhead ribozyme. Biochim. Biophys. Acta 1219: 405 ‐ 412.
dc.identifier.citedreferenceKomatsu, Y., Kanzaki, I., and Ohtsuka, E. 1996. Enhanced folding of hairpin ribozymes with replaced domains. Biochemistry 35: 9815 ‐ 9820.
dc.identifier.citedreferenceMoses, A.C., and Schepartz, A. 1996. Triplex tethered oligonucleotide probes. J. Am. Chem. Soc 118: 10896 ‐ 10897.
dc.identifier.citedreferenceRobles, J. and McLaughlin, L.W. 1997. DNA triplex stabilization using a tethered minor‐groove binding Hoechst 33258 analogue. J. Am. Chem. Soc. 119: 6014 ‐ 6021.
dc.identifier.citedreferenceRajur, S.B., Robles, J., Wiederholt, K., Kuimelis, R.W., and McLaughlin, L.W. 1997. Hoechst 33258 tethered by a hexa(ethylene glycol) linker to the 5′‐termini of oligodeoxynucleotide 15‐mers: Duplex stabilization and fluorescence properties. J. Org. Chem. 62: 523 ‐ 529.
dc.identifier.citedreferenceAltmann, S., Labhardt, A.M., Bur, D., Lehmann, C., Bannwarth, W., Billeter, M., Wuthrich, K., and Leupin, W. 1995 NMR studies of DNA duplexes singly cross‐linked by different synthetic linkers. Nucl. Acids Res. 23: 4827 ‐ 4835.
dc.identifier.citedreferenceAmaratunga, M. and Lohman, T.M. 1993. Escherichia coli Rep helicase unwinds DNA by an active mechanism. Biochemistry 32: 6815 ‐ 6820.
dc.identifier.citedreferenceBenseler, F., Fu, D.J., Ludwig, J., and McLaughlin, L.W. 1993 Hammerhead‐like molecules containing non‐nucleoside linkers are active RNA catalysts. J. Am. Chem. Soc. 115: 8483 ‐ 8484.
dc.identifier.citedreferenceCain, R.J. and Glick, G.D. 1998. Use of cross‐links to study the conformational dynamics of triplex DNA. Biochemistry 37: 1456 ‐ 1464.
dc.identifier.citedreferenceCload, S.T. and Schepartz, A. 1991. Polyether tethered oligonucleotide probes. J. Am. Chem. Soc. 113: 6324 ‐ 6326.
dc.identifier.citedreferenceDurand, M., Chevrie, K., Chassignol, M., and Thuong, N.T. 1990. Circular dichroism studies of an oligodeoxyribonucleotide containing a hairpin loop made of a hexaethylene glycol chain—conformation and stability. Nucl. Acids Res. 18: 6353 ‐ 6359.
dc.identifier.citedreferenceFerentz, A.E. and Verdine, G.L. 1991. Disulfide cross‐linked oligonucleotides. J. Am. Chem. Soc. 113: 4000 ‐ 4002.
dc.identifier.citedreferenceFu, D.J., Benseler, F., and McLaughlin, L.W. 1994. Hammerhead ribozymes containing non‐nucleoside linkers are active RNA catalysts. J. Am. Chem. Soc. 116: 4591 ‐ 4598.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.