Show simple item record

Intersection of endocytic and exocytic systems in Toxoplasma gondii

dc.contributor.authorMcGovern, Olivia L.
dc.contributor.authorRivera‐cuevas, Yolanda
dc.contributor.authorKannan, Geetha
dc.contributor.authorNarwold, Andrew J.
dc.contributor.authorCarruthers, Vern B.
dc.date.accessioned2018-05-15T20:13:05Z
dc.date.available2019-07-01T14:52:17Zen
dc.date.issued2018-05
dc.identifier.citationMcGovern, Olivia L.; Rivera‐cuevas, Yolanda ; Kannan, Geetha; Narwold, Andrew J.; Carruthers, Vern B. (2018). "Intersection of endocytic and exocytic systems in Toxoplasma gondii." Traffic 19(5): 336-353.
dc.identifier.issn1398-9219
dc.identifier.issn1600-0854
dc.identifier.urihttps://hdl.handle.net/2027.42/143628
dc.publisherJohn Wiley & Sons A/S
dc.subject.otherendocytosis
dc.subject.otherexocytosis
dc.subject.otheringestion
dc.subject.otherintracellular trafficking
dc.subject.othermicroneme
dc.subject.otherrhoptry
dc.subject.otherToxoplasma gondii
dc.titleIntersection of endocytic and exocytic systems in Toxoplasma gondii
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143628/1/tra12556.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143628/2/tra12556-sup-0001-EditorialProcess.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143628/3/tra12556_am.pdf
dc.identifier.doi10.1111/tra.12556
dc.identifier.sourceTraffic
dc.identifier.citedreferenceAikawa M, Hepler PK, Huff CG, Sprinz H. The feeding mechanism of avian malarial parasites. J Cell Biol. 1966; 28 ( 2 ): 355 â 373.
dc.identifier.citedreferenceKhmelinskii A, Knop M. Analysis of protein dynamics with tandem fluorescent protein timers. Methods Mol Biol. 2014; 1174: 195 â 210. https://doi.org/10.1007/978-1-4939-0944-5_13.
dc.identifier.citedreferenceAgueta F, Upadhyayulab S, Gaudinb R, et al. Membrane dynamics of dividing cells imaged by lattice lightâ sheet microscopy. Mol Biol Cell. 2016; 27 ( 22 ): 3418 â 3435. Epub 2016 Aug 17.
dc.identifier.citedreferenceTachevaâ Grigorova SK, Santos AJ, Boucrot E, Kirchhausen T. Clathrinâ mediated endocytosis persists during unperturbed mitosis. Cell Rep. 2013; 4 ( 4 ): 659 â 668. https://doi.org/10.1016/j.celrep.2013.07.017 Epub 2013 Aug 15.
dc.identifier.citedreferenceFielding AB, Royle SJ. Mitotic inhibition of clathrinâ mediated endocytosis. Cell Mol Life Sci. 2013; 70 ( 18 ): 3423 â 3433. https://doi.org/10.1007/s00018-012-1250-8 Epub 2013 Jan 11.
dc.identifier.citedreferenceGaji RY, Behnke MS, Lehmann MM, White MW, Carruthers VB. Cell cycleâ dependent, intercellular transmission of Toxoplasma gondii is accompanied by marked changes in parasite gene expression. Mol Microbiol. 2011; 79 ( 1 ): 192 â 204. https://doi.org/10.1111/j.1365-2958.2010.07441.x.
dc.identifier.citedreferenceLobo CA, Rodriguez M, Hou G, Perkins M, Oskov Y, Lustigman S. Characterization of PfRhop148, a novel rhoptry protein of Plasmodium falciparum. Mol Biochem Parasitol. 2003; 128 ( 1 ): 59 â 65.
dc.identifier.citedreferenceTopolska AE, Lidgett A, Truman D, Fujioka H, Coppel RL. Characterization of a membraneâ associated Rhoptry protein of Plasmodium falciparum. J Biol Chem. 2004; 279 ( 6 ): 4648 â 4656. Epub 2003 Nov 12.
dc.identifier.citedreferenceRenard HF, Johannes L, Morsomme P. Increasing Diversity of Biological Membrane Fission Mechanisms. Trends Cell Biol. 2018. pii: S0962â 8924(17)30234â 9. https://doi.org/10.1016/j.tcb.2017.12.001. [Epub ahead of print]
dc.identifier.citedreferenceKumari S, Mayor S. ARF1 is directly involved in dynaminâ independent endocytosis. Nat Cell Biol. 2008; 10 ( 1 ): 30 â 41. doi: ncb1666 [pii].
dc.identifier.citedreferenceChoi JH, Park JB, Bae SS, et al. Phospholipase Câ gamma1 is a guanine nucleotide exchange factor for dynaminâ 1 and enhances dynaminâ 1â dependent epidermal growth factor receptor endocytosis. J Cell Sci. 2004; 117 ( Pt 17 ): 3785 â 3795. https://doi.org/10.1242/jcs.01220.
dc.identifier.citedreferencePucadyil TJ, Schmid SL. Conserved functions of membrane active GTPases in coated vesicle formation. Science. 2009; 325 ( 5945 ): 1217 â 1220. https://doi.org/10.1126/science.1171004.
dc.identifier.citedreferenceChaudhary N, Gomez GA, Howes MT, et al. Endocytic crosstalk: cavins, caveolins, and caveolae regulate clathrinâ independent endocytosis. PLoS Biol. 2014; 12 ( 4 ): e1001832. https://doi.org/10.1371/journal.pbio.1001832.
dc.identifier.citedreferenceNichols BA, Chiappino ML, Pavesio CE. Endocytosis at the micropore of Toxoplasma gondii. Parasitol Res. 1994; 80 ( 2 ): 91 â 98.
dc.identifier.citedreferenceSibley LD, Niesman IR, Parmley SF, Cesbronâ Delauw MF. Regulated secretion of multiâ lamellar vesicles leads to formation of a tubuloâ vesicular network in hostâ cell vacuoles occupied by Toxoplasma gondii. J Cell Sci. 1995; 108 ( Pt 4 ): 1669 â 1677.
dc.identifier.citedreferenceTravier L, Mondragon R, Dubremetz JF, et al. Functional domains of the Toxoplasma GRA2 protein in the formation of the membranous nanotubular network of the parasitophorous vacuole. Int J Parasitol. 2008; 38 ( 7 ): 757 â 773. https://doi.org/10.1016/j.ijpara.2007.10.010.
dc.identifier.citedreferenceWojczyk BS, Stworaâ Wojczyk MM, Hagen FK, et al. cDNA cloning and expression of UDPâ Nâ acetylâ Dâ galactosamine:polypeptide Nâ acetylgalactosaminyltransferase T1 from Toxoplasma gondii. Mol Biochem Parasitol. 2003; 131 ( 2 ): 93 â 107.
dc.identifier.citedreferenceZhao Y, Khaminets A, Hunn J, Howard J. Disruption of the Toxoplasma gondii parasitophorous vacuole by IFNγâ inducible immunity related GTPases (IRG proteins) triggers necrotic cell death. PLoS Pathog. 2009; 5 ( 2 ): e1000288.
dc.identifier.citedreferenceLarson ET, Parussini F, Huynh MH, et al. Toxoplasma gondii cathepsin L is the primary target of the invasionâ inhibitory compound morpholinureaâ leucylâ homophenylâ vinyl sulfone phenyl. J Biol Chem. 2009; 284 ( 39 ): 26839 â 26850. https://doi.org/10.1074/jbc.M109.003780.
dc.identifier.citedreferenceBurg JL, Perlman D, Kasper LH, Ware PL, Boothroyd JC. Molecular analysis of the gene encoding the major surface antigen of Toxoplasma gondii. J Immunol. 1988; 141: 3584 â 3591.
dc.identifier.citedreferenceMorris MT, Coppin A, Tomavo S, VC. Functional analysis of Toxoplasma gondii protease inhibitor 1. J Biol Chem. 2002; 277 ( 47 ): 45259 â 45266.
dc.identifier.citedreferenceAchbarou A, Mercereauâ Puijalon O, Autheman JM, Fortier B, Camus D, Dubremetz JF. Characterization of microneme proteins of Toxoplasma gondii. Mol Biochem Parasitol. 1991; 47 ( 2 ): 223 â 233. 0166â 6851(91)90182â 6 [pii].
dc.identifier.citedreferenceMann T, Beckers C. Characterization of the subpellicular network, a filamentous membrane skeletal component in the parasite Toxoplasma gondii. Mol Biochem Parasitol. 2001; 115 ( 2 ): 257 â 268.
dc.identifier.citedreferenceKafsack BF, Beckers C, Carruthers VB. Synchronous invasion of host cells by Toxoplasma gondii. Mol Biochem Parasitol. 2004; 136 ( 2 ): 309 â 311.
dc.identifier.citedreferenceHuynh MH, Rabenau KE, Harper JM, Beatty WL, Sibley LD, VC. Rapid invasion of host cells by Toxoplasma requires secretion of the MIC2â M2AP adhesive protein complex. EMBO J. 2003; 22 ( 9 ): 2082 â 2090.
dc.identifier.citedreferenceMontoya J, Giraldo L, Efron B, et al. Infectious complications among 620 consecutive heart transplant patients at Stanford University medical center. Clin Infect Dis. 2001; 33: 629 â 640.
dc.identifier.citedreferenceHoffmann S, Batz MB, Morris JG Jr. Annual cost of illness and qualityâ adjusted life year losses in the United States due to 14 foodborne pathogens. J Food Prot. 2012; 75 ( 7 ): 1292 â 1302. https://doi.org/10.4315/0362-028X.JFP-11-417.
dc.identifier.citedreferenceDou Z, McGovern O, Di Cristina M, Carruthers V. Toxoplasma gondii ingests and digests host cytosolic proteins. mBio. 2014; 5 ( 4 ): e01188 â e01114.
dc.identifier.citedreferenceDi Cristina M, Dou Z, Lunghi M, et al. Toxoplasma depends on lysosomal consumption of autophagosomes for persistent infection. Nat Microbiol. 2017; 2: 17096. https://doi.org/10.1038/nmicrobiol.2017.96.
dc.identifier.citedreferenceStenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009; 10 ( 8 ): 513 â 525. https://doi.org/10.1038/nrm2728.
dc.identifier.citedreferenceDettmer J, Hongâ Hermesdorf A, Stierhof Y, Schumacher K. Vacuolar H+â ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell. 2006; 18: 715 â 730.
dc.identifier.citedreferenceTomavo S, Slomianny C, Meissner M, Carruthers VB. Protein trafficking through the endosomal system prepares intracellular parasites for a home invasion. PLoS Pathog. 2013; 9 ( 10 ): e1003629. https://doi.org/10.1371/journal.ppat.1003629.
dc.identifier.citedreferenceMiranda K, Pace DA, Cintron R, et al. Characterization of a novel organelle in Toxoplasma gondii with similar composition and function to the plant vacuole. Mol Microbiol. 2010; 76 ( 6 ): 1358 â 1375. https://doi.org/10.1111/j.1365-2958.2010.07165.x.
dc.identifier.citedreferencePieperhoff MS, Schmitt M, Ferguson DJ, Meissner M. The role of clathrin in postâ Golgi trafficking in Toxoplasma gondii. PLoS One. 2013; 8 ( 10 ): e77620. https://doi.org/10.1371/journal.pone.0077620.
dc.identifier.citedreferenceHarper JM, Huynh MH, Coppens I, Parussini F, Moreno S, Carruthers VB. A cleavable propeptide influences Toxoplasma infection by facilitating the trafficking and secretion of the TgMIC2â M2AP invasion complex. Mol Biol Cell. 2006; 17 ( 10 ): 4551 â 4563. https://doi.org/10.1091/mbc.E06-01-0064.
dc.identifier.citedreferenceKremer K, Kamin D, Rittweger E, et al. An overexpression screen of Toxoplasma gondii Rabâ GTPases reveals distinct transport routes to the Micronemes. PLoS Pathog. 2013; 9 ( 3 ): e1003213. https://doi.org/10.1371/journal.ppat.1003213.
dc.identifier.citedreferenceBreinich MS, Ferguson DJ, Foth BJ, et al. A dynamin is required for the biogenesis of secretory organelles in Toxoplasma gondii. Curr Biol. 2009; 19 ( 4 ): 277 â 286. https://doi.org/10.1016/j.cub.2009.01.039.
dc.identifier.citedreferenceBrydges SD, Harper JM, Parussini F, Coppens I, Carruthers VB. A transient forwardâ targeting element for micronemeâ regulated secretion in Toxoplasma gondii. Biol Cell. 2008; 100 ( 4 ): 253 â 264. https://doi.org/10.1042/BC20070076.
dc.identifier.citedreferenceSangare LO, Alayi TD, Westermann B, et al. Unconventional endosomeâ like compartment and retromer complex in Toxoplasma gondii govern parasite integrity and host infection. Nat Commun. 2016; 7: 11191. https://doi.org/10.1038/ncomms11191.
dc.identifier.citedreferenceSloves PJ, Delhaye S, Mouveaux T, et al. Toxoplasma sortilinâ like receptor regulates protein transport and is essential for apical secretory organelle biogenesis and host infection. Cell Host Microbe. 2012; 11 ( 5 ): 515 â 527. https://doi.org/10.1016/j.chom.2012.03.006.
dc.identifier.citedreferenceVenugopal K, Werkmeister E, Barois N, et al. Dual role of the Toxoplasma gondii clathrin adaptor AP1 in the sorting of rhoptry and microneme proteins and in parasite division. PLoS Pathog. 2017; 13 ( 4 ): e1006331.
dc.identifier.citedreferenceBargieri D, Lagal V, Andenmatten N, Tardieux I, Meissner M, Ménard R. Host cell invasion by apicomplexan parasites: the junction conundrum. PLoS Pathog. 2014; 10 ( 9 ): e1004273. https://doi.org/10.1371/journal.ppat.1004273 eCollection 2014 Sep.
dc.identifier.citedreferenceDowse T, Soldati D. Host cell invasion by the apicomplexans: the significance of microneme protein proteolysis. Curr Opin Microbiol. 2004; 7 ( 4 ): 388 â 396. https://doi.org/10.1016/j.mib.2004.06.013.
dc.identifier.citedreferenceHunter CA, Sibley LD. Modulation of innate immunity by Toxoplasma gondii virulence effectors. Nat Rev Microbiol. 2012; 10 ( 11 ): 766 â 778. https://doi.org/10.1038/nrmicro2858.
dc.identifier.citedreferenceCarey KL, Jongco AM, Kim K, Ward GE. The Toxoplasma go ndii rhoptry protein ROP4 is secreted into the parasitophorous vacuole and becomes phosphorylated in infected cells. Eukaryot Cell. 2004; 3 ( 5 ): 1320 â 1330.
dc.identifier.citedreferenceBesteiro S, Michelin A, Poncet J, Dubremetz J, Lebrun M. Export of a Toxoplasma gondii Rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. PLoS Pathog. 2009; 5 ( 2 ): e1000309.
dc.identifier.citedreferenceEtheridge RD, Alaganan A, Tang K, Lou HJ, Turk BE, Sibley LD. The Toxoplasma pseudokinase ROP5 forms complexes with ROP18 and ROP17 kinases that synergize to control acute virulence in mice. Cell Host Microbe. 2014; 15 ( 5 ): 537 â 550.
dc.identifier.citedreferenceDou Z, Coppens I, Carruthers VB. Nonâ canonical maturation of two papainâ family proteases in Toxoplasma gondii. J Biol Chem. 2013; 288 ( 5 ): 3523 â 3534. https://doi.org/10.1074/jbc.M112.443697.
dc.identifier.citedreferenceHuynh MH, Carruthers VB. A Toxoplasma gondii Ortholog of Plasmodium GAMA Contributes to Parasite Attachment and Cell Invasion. mSphere. 2016; 1 ( 1 ):10.1128/mSphere.00012â 16. eCollection 2016 Janâ Feb. https://doi.org/10.1128/mSphere.00012-16
dc.identifier.citedreferenceHuynh MH, Boulanger MJ, Carruthers VB. A conserved apicomplexan microneme protein contributes to Toxoplasma gondii invasion and virulence. Infect Immun. 2014; 82 ( 10 ):4358â 4368. https://doi.org/10.1128/IAI.01877-14.
dc.identifier.citedreferenceSidik SM, Huet D, Ganesan SM, et al. A genomeâ wide CRISPR screen in Toxoplasma identifies essential apicomplexan genes. Cell. 2016; 166 ( 6 ): 1423 â 1435.e12. https://doi.org/10.1016/j.cell.2016.08.019.
dc.identifier.citedreferenceKafsack BF, Pena JD, Coppens I, Ravindran S, Boothroyd JC, Carruthers VB. Rapid membrane disruption by a perforinâ like protein facilitates parasite exit from host cells. Science. 2009; 323 ( 5913 ): 530 â 533. https://doi.org/10.1126/science.1165740.
dc.identifier.citedreferenceGuerin A, Corrales RM, Parker ML, et al. Efficient invasion by Toxoplasma depends on the subversion of host protein networks. Nat Microbiol. 2017; 2 ( 10 ): 1358 â 1366. https://doi.org/10.1038/s41564-017-0018-1.
dc.identifier.citedreferenceFutter CE, Connolly CN, Cutler DF, Hopkins CR. Newly synthesized transferrin receptors can be detected in the endosome before they appear on the cell surface. J Biol Chem. 1995; 270 ( 18 ): 10999 â 11003.
dc.identifier.citedreferenceMargos G, Bannister LH, Dluzewski AR, Hopkins J, Williams IT, Mitchell GH. Correlation of structural development and differential expression of invasionâ related molecules in schizonts of Plasmodium falciparum. Parasitology. 2004; 129 ( Pt 3 ): 273 â 287.
dc.identifier.citedreferenceHanssen E, Knoechel C, Dearnley M, et al. Soft Xâ ray microscopy analysis of cell volume and hemoglobin content in erythrocytes infected with asexual and sexual stages of Plasmodium falciparum. J Struct Biol. 2012; 177 ( 2 ): 224 â 232. https://doi.org/10.1016/j.jsb.2011.09.003.
dc.identifier.citedreferenceFrancis SE, Gluzman IY, Oksman A, et al. Molecular characterization and inhibition of a Plasmodium falciparum aspartic hemoglobinase. EMBO J. 1994; 13 ( 2 ): 306 â 317.
dc.identifier.citedreferenceBakar NA, Klonis N, Hanssen E, Chan C, Tilley L. Digestiveâ vacuole genesis and endocytic processes in the early intraerythrocytic stages of Plasmodium falciparum. J Cell Sci. 2010; 123: 441 â 450. https://doi.org/10.1242/jcs.061499.
dc.identifier.citedreferenceKrugliak M, Zhang J, Ginsburg H. Intraerythrocytic Plasmodium falciparum utilizes only a fraction of the amino acids derived from the digestion of host cell cytosol for the biosynthesis of its proteins. Mol Biochem Parasitol. 2002; 119 ( 2 ): 249 â 256.
dc.identifier.citedreferenceUemura T, Nakano A. Plant TGNs: dynamics and physiological functions. Histochem Cell Biol. 2013; 140 ( 3 ): 341 â 345. https://doi.org/10.1007/s00418-013-1116-7 Epub 2013 Jul 6.
dc.identifier.citedreferencePfluger SL, Goodson HV, Moran JM, et al. Receptor for retrograde transport in the apicomplexan parasite Toxoplasma gondii. Eukaryot Cell. 2005; 4 ( 2 ): 432 â 442.
dc.identifier.citedreferenceFrancia ME, Wicher S, Pace DA, Sullivan J, Moreno SNJ, Arrizabalaga G. A Toxoplasma gondii protein with homology to intracellular type Na + /H + exchangers is important for osmoregulation and invasion. Exp Cell Res. 2011; 317 ( 10, 10 ): 1382 â 1396.
dc.identifier.citedreferenceParussini F, Coppens I, Shah PP, Diamond SL, Carruthers VB. Cathepsin L occupies a vacuolar compartment and is a protein maturase within the endo/exocytic system of Toxoplasma gondii. Mol Microbiol. 2010; 76 ( 6 ): 1340 â 1357.
dc.identifier.citedreferenceUemura T, Suda Y, Ueda T, Nakano A. Dynamic behavior of the transâ Golgi network in root tissues of Arabidopsis revealed by superâ resolution live imaging. Plant Cell Physiol. 2014; 55 ( 4 ): 694 â 703. https://doi.org/10.1093/pcp/pcu010 Epub 2014 Jan 18.
dc.identifier.citedreferenceSakura T, Sindikubwabo F, Oesterlin LK, et al. A critical role for Toxoplasma gondii vacuolar protein sorting VPS9 in secretory organelle biogenesis and host infection. Sci Rep. 2016; 6: 38842. https://doi.org/10.1038/srep38842.
dc.identifier.citedreferenceRadke JR, Striepen B, Guerini MN, Jerome ME, Roos DS, White MW. Defining the cell cycle for the tachyzoite stage of Toxoplasma gondii. Mol Biochem Parasitol. 2001; 115 ( 2 ): 165 â 175.
dc.identifier.citedreferenceHu K, Johnson J, Florens L, et al. Cytoskeletal components of an invasion machineâ â the apical complex of Toxoplasma gondii. PLoS Pathog. 2006; 2 ( 2 ): e13 Epub.
dc.identifier.citedreferenceLebrun M, Michelin A, El Hajj H, et al. The rhoptry neck protein RON4 reâ localizes at the moving junction during Toxoplasma gondii invasion. Cell Microbiol. 2005; 7 ( 12 ): 1823 â 1833. https://doi.org/10.1111/j.1462-5822.2005.00646.x.
dc.identifier.citedreferenceFerguson SM, De Camilli P. Dynamin, a membraneâ remodelling GTPase. Nat Rev Mol Cell Biol. 2012; 13 ( 2 ): 75 â 88. https://doi.org/10.1038/nrm3266.
dc.identifier.citedreferenceFujimoto M, Tsutsumi N. Dynaminâ related proteins in plant postâ Golgi traffic. Front Plant Sci. 2014; 5: 408. https://doi.org/10.3389/fpls.2014.00408.
dc.identifier.citedreferenceHinshaw JE. Dynamin and its role in membrane fission. Annu Rev Cell Dev Biol. 2000; 16: 483 â 519. https://doi.org/10.1146/annurev.cellbio.16.1.483.
dc.identifier.citedreferenceSmaczynskaâ de R II, Allwood EG, Aghamohammadzadeh S, Hettema EH, Goldberg MW, Ayscough KR. A role for the dynaminâ like protein Vps1 during endocytosis in yeast. J Cell Sci. 2010; 123 ( Pt 20 ): 3496 â 3506. https://doi.org/10.1242/jcs.070508.
dc.identifier.citedreferenceMilani KJ, Schneider TG, Taraschi TF. Defining the morphology and mechanism of the hemoglobin transport pathway in Plasmodium falciparumâ infected erythrocytes. Eukaryot Cell. 2015; 14 ( 4 ): 415 â 426. https://doi.org/10.1128/EC.00267-14.
dc.identifier.citedreferenceDamke H, Baba T, Warnock DE, Schmid SL. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol. 1994; 127 ( 4 ): 915 â 934.
dc.identifier.citedreferenceSlomianny C. Threeâ dimensional reconstruction of the feeding process of the malaria parasite. Blood Cells. 1990; 16 ( 2â 3 ): 369 â 378.
dc.identifier.citedreferenceBehnke MS, Wootton JC, Lehmann MM, et al. Coordinated progression through two subtranscriptomes underlies the tachyzoite cycle of Toxoplasma gondii. PloS One. 2010; 5: e12354.
dc.identifier.citedreferenceNishi M, Hu K, Murray JM, Roos DS. Organellar dynamics during the cell cycle of Toxoplasma gondii. J Cell Sci. 2008; 121 ( Pt 9 ): 1559 â 1568. https://doi.org/10.1242/jcs.021089.
dc.identifier.citedreferenceSubach FV, Subach OM, Gundorov IS, et al. Monomeric fluorescent timers that change color from blue to red report on cellular trafficking. Nat Chem Biol. 2009; 5 ( 2 ): 118 â 126.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.