Show simple item record

Theoretical Principles of In Vitro Selection Using Combinatorial Nucleic Acid Libraries

dc.contributor.authorVant‐hull, Barry
dc.contributor.authorGold, Larry
dc.contributor.authorZichi, Dominic A.
dc.date.accessioned2018-05-15T20:13:11Z
dc.date.available2018-05-15T20:13:11Z
dc.date.issued2000-02
dc.identifier.citationVant‐hull, Barry ; Gold, Larry; Zichi, Dominic A. (2000). "Theoretical Principles of In Vitro Selection Using Combinatorial Nucleic Acid Libraries." Current Protocols in Nucleic Acid Chemistry 00(1): 9.1.1-9.1.16.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/143632
dc.description.abstractA new paradigm for drug discovery and biological research has developed from technologies that integrate combinatorial chemistry with rounds of selection and amplification, a technique called in vitro selection or systematic evolution of ligands by exponential enrichment (SELEX). This overview unit discusses nucleic acid libraries that can be used, affinity probability distributions, an equilibrium model for SELEX, and optimal conditions including concentrations and signalâ toâ noise ratios.
dc.publisherWiley Periodicals, Inc.
dc.titleTheoretical Principles of In Vitro Selection Using Combinatorial Nucleic Acid Libraries
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143632/1/cpnc0901.pdf
dc.identifier.doi10.1002/0471142700.nc0901s00
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceKay, B.K. 1994. Biologically displayed random peptides as reagents in mapping proteinâ protein interactions. Persp. Drug Discovery Design 2: 251 â 268
dc.identifier.citedreferenceKlug, S.J. and Famulok, M. 1994. All you wanted to know about SELEX. Mol. Biol. Rep. 20: 97 â 107
dc.identifier.citedreferenceWinter, G., Griffiths, A.D., Hawkins, R.E., and Hoogenboom, H.R. 1994. Making antibodies by phage display technology. Annu. Rev. Immunol. 12: 433 â 455
dc.identifier.citedreferenceVantâ Hull, B., Payanoâ Baez, A.R., Davis, R.H., and Gold, L. 1998. The mathematics of SELEX against complex targets. J. Mol.Biol. 278: 579 â 597
dc.identifier.citedreferenceTuerk, C. and Gold, L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249: 505 â 510
dc.identifier.citedreferenceSun, F., Galas, D., and Waterman, M.S. 1996. A mathematical analysis of in vitro molecular selectionâ amplification. J. Mol. Biol. 258: 650 â 660
dc.identifier.citedreferenceStormo, G.D. and Yoshioka, M. 1991. Specificity of the mnt protein determined by binding to randomized operators. Proc. Natl. Acad. Sci. U.S.A. 88: 5699 â 9743
dc.identifier.citedreferenceScott, J.K. and Smith, G.P. 1990. Searching for peptide ligands with an epitope library. Science 249: 386 â 390
dc.identifier.citedreferenceSchuster, P. 1995. How to search for RNA structures. Theoretical concepts in evolutionary biotechnology. J. Biotechnol. 41: 239 â 257
dc.identifier.citedreferenceSabeti, P.C., Unrau, P.J., and Bartel, D.P. 1997. Accessing rare activities from random RNA sequences: The importance of the length of molecules in the starting pool. Chem. Biol. 4: 767 â 774
dc.identifier.citedreferenceSchneider, D., Gold, L., and Platt, T. 1993. Selective enrichment of RNA species for tight binding to Escherichia coli rho factor. FASEB J. 7: 201 â 201
dc.identifier.citedreferenceMathieuâ Daudi, F., Welsh, J., Vogt, T., and McClelland, M. 1996. DNA rehybridization during PCR: the â C 0 t effectâ and its consequences. Nucl. Acids Res. 24: 2080 â 2086
dc.identifier.citedreferenceLevitan, B. 1998. Stochastic modeling and optimization of phage display. J. Mol. Biol. 277: 893 â 916
dc.identifier.citedreferenceBerg, O.G. and von Hippel, P.H. 1987. Selection of DNA binding sites by regulatory proteins: Statisticalâ mechanical theory and application to operators and promoters. J. Mol. Biol. 193: 723 â 750
dc.identifier.citedreferenceBlackwell, T.K. and Weintraub, H. 1990. Differences and similarities in DNAâ binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science 250: 1104 â 1110
dc.identifier.citedreferenceBreaker, R.R. 1997. In vitro selection of catalytic polynucleotides. Chem. Rev. 97: 371 â 390
dc.identifier.citedreferenceCiesiolka, J., Illangasekare, M., Majerfeld, I., Nickles, T., Welch, M., Yarus, M., and Zinnen, S. 1996. Affinity selectionâ amplification from randomized ribooligonucleotide pools. Methods Enzymol. 267: 315 â 335
dc.identifier.citedreferenceCwirla, S.E., Peters, E.A., Barrett, R.W., and Dower, W.J. 1990. Peptides on phage: A vast library of peptides for identifying ligands. Proc. Natl. Acad. Sci. U.S.A. 87: 6378 â 6382
dc.identifier.citedreferenceEllington, A.D. and Szostak, J.W. 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346: 818 â 822
dc.identifier.citedreferenceGold, L. 1995. Oligonucleotides as research, diagnostic, and therapeutic agents. J. Biol. Chem. 95: 13581 â 13584 270:13581â 13584.
dc.identifier.citedreferenceGold, L., Polisky, B., Uhlenbeck, O., and Yarus, M. 1995. Diversity of oligonucleotide functions. Annu. Rev. Biochem. 64: 763 â 797.
dc.identifier.citedreferenceHager, A.J., Pollard, J.D., Jr., and Szostak, J.W. 1996. Ribozymes: Aiming at RNA replication and protein synthesis. Chem. Biol. 3: 717 â 725
dc.identifier.citedreferenceIrvine, D., Tuerk, C., and Gold, L. 1991. SELEXION: Systematic evolution of ligands by exponential enrichment with integrated optimization by nonlinear analysis. J. Mol. Biol. 222: 739 â 761
dc.identifier.citedreferenceKauffman, S.A. and Macready, W.G. 1995. Search strategies for applied molecular evolution. J. Theor. Biol. 173: 427 â 440
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.