Show simple item record

Solid‐Phase Synthesis of Branched Oligonucleotides

dc.contributor.authorCarriero, Sandra
dc.contributor.authorDamha, Masad J.
dc.date.accessioned2018-05-15T20:13:13Z
dc.date.available2018-05-15T20:13:13Z
dc.date.issued2002-06
dc.identifier.citationCarriero, Sandra; Damha, Masad J. (2002). "Solid‐Phase Synthesis of Branched Oligonucleotides." Current Protocols in Nucleic Acid Chemistry 9(1): 4.14.1-4.14.32.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/143634
dc.description.abstractBranched nucleic acids (bNAs) have been of particular interest since the discovery of RNA forks and lariats as intermediates of nuclear mRNA splicing, as well as multicopy, single‐stranded DNA (msDNA). Such molecules contain the inherent trait of vicinal 2′,5′‐ and 3′,5′‐phosphodiester linkages. bNAs have many potential applications in nucleic acid biochemistry, particularly as tools for studying the substrate specificity of lariat debranching enzymes, and as biological probes for the investigation of branch recognition during pre‐mRNA splicing. The protocols described herein allow for the facile solid‐phase synthesis of branched DNA and/or RNA oligonucleotides of varying chain length, containing symmetrical or asymmetrical sequences immediate to an RNA branch point. The synthetic methodology utilizes widely adopted phosphoramidite chemistry. Methods for efficient purification of bNAs via anion‐exchange HPLC and PAGE are also illustrated.
dc.publisherWiley Periodicals, Inc.
dc.publisherAcademic Press
dc.titleSolid‐Phase Synthesis of Branched Oligonucleotides
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143634/1/cpnc0414.pdf
dc.identifier.doi10.1002/0471142700.nc0414s09
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceChapman, K.B. and Boeke, J.D. 1991. Isolation and characterization of the gene encoding yeast debranching enzyme. Cell 65: 483 ‐ 492.
dc.identifier.citedreferenceChen, Z. and Ruffner, D.E. 1996. Modified crush‐and‐soak method for recovering oligodeoxynucleotides from polyacrylamide gel. BioTechniques 21: 820 ‐ 822.
dc.identifier.citedreferenceRobidoux, S., Klinck, R., Gehring, K., and Damha, M.J. 1997. Association of branched oligonucleotides into the i‐motif. J. Biomol. Struct. Dyn. 15: 517 ‐ 527.
dc.identifier.citedreferenceRousse, B., Puri, N., Viswanadham, G., Agback, P., Glemarec, C., Sandstroem, A., Sund, C., and Chattopadhyaya, J. 1994. Solution conformation of hexameric and heptameric lariat‐RNAs and their self‐cleavage reactions which give products mimicking those from some catalytic RNAs (ribozymes). Tetrahedron 50: 1777 ‐ 1810.
dc.identifier.citedreferenceRuskin, B. and Green, M. 1985. An RNA processing activity that debranches RNA lariats. Science 229: 135 ‐ 140.
dc.identifier.citedreferenceRuskin, B., Krainer, A.R., Maniatis, T., and Green, M.R. 1984. Excision of an intact intron as a novel lariat structure during pre‐mRNA spicing in vitro. Cell 38: 317 ‐ 331.
dc.identifier.citedreferenceSproat, B.S., Beijer, B., Grotli, M., Ryder, U., Morand, K.L., and Lamond, A.I. 1994. Novel solid‐phase synthesis of branched oligoribonucleotides including a substrate for the RNA debranching enzyme. J. Am. Chem. Soc. Perkin. Trans. 1: 419 ‐ 431.
dc.identifier.citedreferenceSproat, B., Colonna, F., Mullah, B., Tsou, D., Andrus, A., Hampel, A., and Vinayak, R. 1995. An efficient method for the isolation and purification of oligoribonucleotides. Nucleosides & Nucleotides 14: 255 ‐ 273.
dc.identifier.citedreferenceStill, W.C., Kahn, M., and Mitra, A. 1978. Rapid chromatographic technique for preparative separations with moderate resolution. J. Org. Chem. 43: 2923 ‐ 2925.
dc.identifier.citedreferenceTi, G.S., Gaffney, B.L., and Jones, R.A. 1982. Transient protection: Efficient one‐flask syntheses of protected deoxynucleosides. J. Am. Chem. Soc. 104: 1316 ‐ 1319.
dc.identifier.citedreferenceUddin, A.H., Piunno, P.A.E., Hudson, R.H.E., Damha, M.J., and Krull, U.J. 1997. A fiber optic biosensor for fluorimetric detection of triple‐helical DNA. Nucl. Acids Res. 25: 4139 ‐ 4146.
dc.identifier.citedreferenceUrdea, M.S., Horn, T., Fultz, T.J., Anderson, M., Running, J.A., Hamren, S., Ahle, D., and Chang, C.A. 1991. Branched DNA amplification multimers for the sensitive, direct detection of human hepatitis viruses. Nucl. Acids Symp. Series. 24: 197 ‐ 200.
dc.identifier.citedreferenceWallace, J.C. and Edmonds, M. 1983. Polyadenylated nuclear RNA contains branches. Proc. Natl. Acad. Sci. U.S.A. 80: 950 ‐ 954.
dc.identifier.citedreferenceWincott, F., Di Renzo, A., Shaffer, C., Grimm, S., Tracz, D., Workman, C., Sweedler, D., Gonzalez, C., Scaringe, S., and Usman, N. 1995. Synthesis, deprotection, analysis and purification of RNA and ribozymes. Nucl. Acids. Res. 23: 2677 ‐ 2684.
dc.identifier.citedreferenceWu, T., Ogilvie, K.K., and Pon, R.T. 1989. Prevention of chain cleavage in the chemical synthesis of 2′‐silylated oligoribonucleotides. Nucl. Acids Res. 17: 3501 ‐ 3517.
dc.identifier.citedreferenceYee, T., Furuichi, T., Inouye, S., and Inouye, M. 1984. Multicopy single‐stranded DNA isolated from a Gram‐negative bacterium, Myxococcus xanthus. Cell 38: 203 ‐ 209.
dc.identifier.citedreferenceDamha and Zabarylo, 1989. See above.
dc.identifier.citedreferenceDamha et al., 1992. See above.
dc.identifier.citedreferenceNam et al., 1994. See above.
dc.identifier.citedreferencePadgett, R.A., Konarska, M.M., Grabowski, P.J., Hardy, S.F., and Sharp, P.A. 1984. Lariat RNA’s as intermediates and products in the splicing of messenger precursors. Science 225: 898 ‐ 903.
dc.identifier.citedreferenceSharp, P.A. 1994. Split genes and RNA splicing. Cell 77: 805 ‐ 815.
dc.identifier.citedreferenceWallace and Edmonds, 1983. See above.
dc.identifier.citedreferencehttp://paris.chem.yale.edu/extinct.html
dc.identifier.citedreferenceBraich, R.S. and Damha, M.J. 1997. Regiospecific solid‐phase synthesis of branched oligonucleotides. Effect of vicinal 2′,5′‐ (or 2′,3′‐) and 3′,5′‐phosphosdiester linkages on the formation of hairpin DNA. Bioconjugate Chem. 8: 370 ‐ 377.
dc.identifier.citedreferenceCarriero, S., Braich, R.S., Hudson, R.H.E., Anglin, D., Friesen, J.D., and Damha, M.J. 2001. Inhibition of in vitro pre‐mRNA splicing in S. cerevisiae by branched oligonucleotides. Nucleosides, Nucleotides, and Nucl. Acids. 20: 873 ‐ 877.
dc.identifier.citedreferenceDamha, M.J., and Braich, R.S. 1998. Synthesis of branched DNA/RNA chimera similar to the msDNA molecule of Myxoccus xanthus. Tetrahedron lett. 39: 3907 ‐ 3910.
dc.identifier.citedreferenceDamha, M.J. and Ogilvie, K.K. 1988. Synthesis and spectroscopic analysis of branched RNA fragments: Messenger RNA splicing intermediates. J. Org. Chem. 53: 3710 ‐ 3722.
dc.identifier.citedreferenceDamha, M.J. and Zabarylo, S.V. 1989. Automated solid‐phase synthesis of branched oligonucleotides. Tetrahedron Lett. 30: 6295 ‐ 6298.
dc.identifier.citedreferenceDamha, M.J., Pon, R.T., and Ogilvie, K.K. 1985. Chemical synthesis of branched RNA: Novel trinucleoside diphosphates containing vicinal 2′‐5′ and 3′‐5′ phosphodiester linkages. Tetrahedron Lett. 26: 4839 ‐ 4842.
dc.identifier.citedreferenceDamha, M.J., Giannaris, P.A., and Zabarylo, S.V. 1990. An improved procedure for derivatization of controlled‐pore glass beads for solid‐phase oligonucleotide synthesis. Nucl. Acids Res. 18: 3813 ‐ 3821.
dc.identifier.citedreferenceDamha, M.J., Ganeshan, K., Hudson, R.H.E., and Zabarylo, S.V. 1992. Solid‐phase synthesis of branched oligoribonucleotides related to messenger RNA splicing intermediates. Nucl. Acids Res. 20: 6565 ‐ 6573.
dc.identifier.citedreferenceEadie, J.S., McBride, L.J., Efcavitch, J.W., Hoff, L.B., and Cathcart, R. 1987. High‐performance liquid chromatographic analysis of oligodeoxyribonucleotide base composition. Anal. Biochem. 165: 442 ‐ 447.
dc.identifier.citedreferenceGaneshan, K., Tadey, T., Nam, K., Braich, R., Purdy, W.C., Boeke, J.D., and Damha, M.J. 1995. Novel approaches to the synthesis and analysis of branched RNA. Nucleosides & Nucleotides 14: 1009 ‐ 1013.
dc.identifier.citedreferenceGasparutto, D., Livache, T., Bazin, H., Duplaa, A.M., Guy, A., Khorlin, A., Molko, D., Roget, A., and Teoule, R. 1992. Chemical synthesis of a biologically active natural tRNA with its minor bases. Nucl. Acids Res. 20: 5159 ‐ 5166.
dc.identifier.citedreferenceHakimelahi, G.H., Proba, Z.A., and Ogilvie, K.K. 1982. New catalysts and procedures for the dimethoxytritylation and selective silylation of ribonucleosides. Can. J. Chem. 60: 1106 ‐ 1113.
dc.identifier.citedreferenceHudson, R.H.E. and Damha, M.J. 1993. Nucleic acid dendrimers: Novel biopolymer structures. J. Am. Chem. Soc. 115: 2119 ‐ 2124.
dc.identifier.citedreferenceHudson, R.H.E., Uddin, A.H., and Damha, M.J. 1995. Association of branched nucleic acids: Structural and physicochemical analysis of antiparallel TAT triple‐helical DNA. J. Am. Chem. Soc. 117: 12470 ‐ 12477.
dc.identifier.citedreferenceHudson, R.H.E., Robidoux, S., and Damha, M.J. 1998. Divergent synthesis of nucleic acid dendrimers. Tetrahedron Lett. 32: 1299 ‐ 1302.
dc.identifier.citedreferenceInouye, S., Furuichi, T., Dhundle, A., and Inouye, M. 1987. Molecular Biology of RNA: New Perspectives ( M. Inouye and B.S. Dudock, eds.) pp. 271. Academic Press, San Diego.
dc.identifier.citedreferenceKierzek, R., Kopp, D.W., Edmonds, M., and Caruthers, M.H. 1986. Chemical synthesis of branched RNA. Nucl. Acids Res. 14: 4751 ‐ 4764.
dc.identifier.citedreferenceLecchi, P., Le, H.M.T., and Pannell, L.K. 1995. 6‐Aza‐2‐thiothymine: A matrix for MALDI spectra of oligonucleotides. Nucl. Acids Res. 23: 1276 ‐ 1277.
dc.identifier.citedreferenceLyttle, M.H., Adams, H., Hudson, D., and Cook, R.M. 1997. Versatile linker chemistry for synthesis of 3′‐modified DNA. Bioconjugate Chem. 8: 193 ‐ 198.
dc.identifier.citedreferenceNam, K., Hudson, R.H.E., Chapman, K.B., Ganeshan, K., Damha, M.J., and Boeke, J.D. 1994. Yeast lariat debranching enzyme: Substrate and sequence specificity. J. Biol. Chem. 269: 20613 ‐ 20621.
dc.identifier.citedreferenceOoi, S.L., Dann, C. III, Nam, K., Leahy, D., Damha, M.J., and Boeke, J.D. 2001. Ribonucleases part A: Functional roles and mechanisms. Methods Enzymol. 342: 233 ‐ 250.
dc.identifier.citedreferencePon, R.T., Yu, S., and Sanghvi, Y.S. 1999. Rapid esterification of nucleosides to solid‐phase supports for oligonucleotide synthesis using uronium and phosphonium coupling reagents. Bioconjugate Chem. 10: 1051 ‐ 1057.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.