Show simple item record

Nutrient availability and invasive fish jointly drive community dynamics in an experimental aquatic system

dc.contributor.authorPreston, Daniel L.
dc.contributor.authorHedman, Hayden D.
dc.contributor.authorJohnson, Pieter T. J.
dc.date.accessioned2018-05-15T20:13:14Z
dc.date.available2019-05-13T14:45:28Zen
dc.date.issued2018-03
dc.identifier.citationPreston, Daniel L.; Hedman, Hayden D.; Johnson, Pieter T. J. (2018). "Nutrient availability and invasive fish jointly drive community dynamics in an experimental aquatic system." Ecosphere (3): n/a-n/a.
dc.identifier.issn2150-8925
dc.identifier.issn2150-8925
dc.identifier.urihttps://hdl.handle.net/2027.42/143635
dc.description.abstractSpecies invasions increasingly occur alongside other forms of ecosystem change, highlighting the need to understand how invasion outcomes are influenced by environmental factors. Within freshwaters, two of the most widespread drivers of change are introduced fishes and nutrient loading, yet it remains difficult to predict how interactions between these drivers affect invasion success and consequences for native communities. To test competing theories about interactions between nutrients and invasions, we conducted a 2 × 3 factorial mesocosm experiment, varying western mosquitofish (Gambusia affinis) presence and nutrient availability within aquatic communities. Based on theory, increased nutrients could either (1) facilitate coexistence between predatory mosquitofish and native species by increasing prey availability (the invader attenuation hypothesis) or (2) strengthen predation effects by enhancing fish productivity more than native community members (the invader amplification hypothesis). In outdoor mesocosms designed to mimic observed nutrient conditions and local community structure, mosquitofish directly reduced the abundances of zooplankton and three native amphibian species, leading to indirect increases in phytoplankton, periphyton, and freshwater snail biomass through trophic cascades. Nutrient additions increased native amphibian growth but had especially pronounced effects on the productivity of invasive mosquitofish. The elevated nutrient condition supported ~5 times more juvenile mosquitofish and 30% higher biomass than the low nutrient condition. Increased nutrients levels did not weaken the top‐down effects of mosquitofish on invertebrates or amphibians. Collectively, our results support the invader amplification hypothesis, suggesting that increased nutrient loading may benefit invasive species without attenuating their undesirable effects on native community members.
dc.publisherUS Fish and Wildlife Service
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpond‐breeding amphibian
dc.subject.othertrophic cascade
dc.subject.othereutrophication
dc.subject.otherfood web
dc.subject.otherfreshwater
dc.subject.otherintroduced
dc.subject.othernonnative
dc.subject.otherpollution
dc.subject.otherpond
dc.titleNutrient availability and invasive fish jointly drive community dynamics in an experimental aquatic system
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143635/1/ecs22153_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143635/2/ecs22153.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143635/3/ecs22153-sup-0001-AppendixS1.pdf
dc.identifier.doi10.1002/ecs2.2153
dc.identifier.sourceEcosphere
dc.identifier.citedreferenceRicciardi, A., and H. J. MacIsaac. 2011. Impacts of biological invasions on freshwater ecosystems. Pages 211 – 224 in D. M. Richardson, editor. Fifty years of invasion ecology: the legacy of Charles Elton. Wiley‐Blackwell, West Sussex, UK.
dc.identifier.citedreferenceRodriguez, L. F. 2006. Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biological Invasions 8: 927 – 939.
dc.identifier.citedreferenceRosseel, Y., et al. 2011. lavaan: latent variable analysis. R Package Version 04‐11. https://cran.r-project.org/web/packages/lavaan/index.html
dc.identifier.citedreferenceSchriver, P. E. R., J. Bogestrand, E. Jeppesen, and M. Sondergaard. 1995. Impact of submerged macrophytes on fish‐zooplankton‐phytoplankton interactions: large‐scale enclosure experiments in a shallow eutrophic lake. Freshwater Biology 33: 255 – 270.
dc.identifier.citedreferenceSemlitsch, R. D., and M. D. Boone. 2010. Aquatic mesocosms. Pages 97 – 102 in C. Kenneth Dodd Jr., editor. Amphibian ecology and conservation. Oxford University Press, New York, New York, USA.
dc.identifier.citedreferenceShulse, C. D., and R. D. Semlitsch. 2014. Western mosquitofish ( Gambusia affinis ) bolster the prevalence and severity of tadpole tail injuries in experimental wetlands. Hydrobiologia 723: 131 – 144.
dc.identifier.citedreferenceShulse, C. D., R. D. Semlitsch, and K. M. Trauth. 2013. Mosquitofish dominate amphibian and invertebrate community development in experimental wetlands. Journal of Applied Ecology 50: 1244 – 1256.
dc.identifier.citedreferenceSilva, L. C., R. S. Corrêa, T. A. Doane, E. I. Pereira, and W. R. Horwath. 2013. Unprecedented carbon accumulation in mined soils: the synergistic effect of resource input and plant species invasion. Ecological Applications 23: 1345 – 1356.
dc.identifier.citedreferenceSmith, V. H., and D. W. Schindler. 2009. Eutrophication science: Where do we go from here? Trends in Ecology and Evolution 24: 201 – 207.
dc.identifier.citedreferenceSpivak, A. C., M. J. Vanni, and E. M. Mette. 2011. Moving on up: Can results from simple aquatic mesocosm experiments be applied across broad spatial scales? Freshwater Biology 56: 279 – 291.
dc.identifier.citedreferenceStephen, D., et al. 2004. Continental‐scale patterns of nutrient and fish effects on shallow lakes: introduction to a pan‐European mesocosm experiment. Freshwater Biology 49: 1517 – 1524.
dc.identifier.citedreferenceStrayer, D. L. 2010. Alien species in freshwaters: ecological effects, interactions with other stressors, and prospects for the future. Freshwater Biology 55: 152 – 174.
dc.identifier.citedreferenceTabassum, S., and M. R. Leishman. 2016. Trait values and not invasive status determine competitive outcomes between native and invasive species under varying soil nutrient availability. Austral Ecology 41: 875 – 885.
dc.identifier.citedreferenceTeixeira, M. C., L. M. Bini, and S. M. Thomaz. 2017. Biotic resistance buffers the effects of nutrient enrichment on the success of a highly invasive aquatic plant. Freshwater Biology 62: 65 – 71.
dc.identifier.citedreferenceTibbets, T. M., A. C. Krist, R. O. Hall Jr., and L. A. Riley. 2010. Phosphorus‐mediated changes in life history traits of the invasive New Zealand mudsnail ( Potamopyrgus antipodarum ). Oecologia 163: 549 – 559.
dc.identifier.citedreferenceTownsend, C. R. 1996. Invasion biology and ecological impacts of brown trout Salmo trutta in New Zealand. Biological Conservation 78: 13 – 22.
dc.identifier.citedreferenceTylianakis, J. M., R. K. Didham, J. Bascompte, and D. A. Wardle. 2008. Global change and species interactions in terrestrial ecosystems. Ecology Letters 11: 1351 – 1363.
dc.identifier.citedreferenceVakkilainen, K., et al. 2004. Response of zooplankton to nutrient enrichment and fish in shallow lakes: a pan‐European mesocosm experiment. Freshwater Biology 49: 1619 – 1632.
dc.identifier.citedreferenceVan de Bund, W. J., et al. 2004. Responses of phytoplankton to fish predation and nutrient loading in shallow lakes: a pan‐European mesocosm experiment. Freshwater Biology 49: 1608 – 1618.
dc.identifier.citedreferenceVitousek, P. M., C. M. D’antonio, L. L. Loope, M. Rejmanek, and R. Westbrooks. 1997. Introduced species: a significant component of human‐caused global change. New Zealand Journal of Ecology 1997: 1 – 16.
dc.identifier.citedreferenceWebb, C., and J. Joss. 1997. Does predation by the fish Gambusia holbrooki (Atheriniformes: Poeciliidae) contribute to declining frog populations? Australian Zoologist 30: 316 – 324.
dc.identifier.citedreferenceWinsome, T., L. Epstein, P. F. Hendrix, and W. R. Horwath. 2006. Competitive interactions between native and exotic earthworm species as influenced by habitat quality in a California grassland. Applied Soil Ecology 32: 38 – 53.
dc.identifier.citedreferenceWootton, J. T., and M. Emmerson. 2005. Measurement of interaction strength in nature. Annual Review of Ecology, Evolution, and Systematics 36: 419 – 444.
dc.identifier.citedreferenceZeiber, R. A., T. M. Sutton, and B. E. Fisher. 2008. Western mosquitofish predation on native amphibian eggs and larvae. Journal of Freshwater Ecology 23: 663 – 671.
dc.identifier.citedreferenceZenni, R. D., and M. A. Nuñez. 2013. The elephant in the room: the role of failed invasions in understanding invasion biology. Oikos 122: 801 – 815.
dc.identifier.citedreferenceZhao, H., W. Yang, L. Xia, Y. Qiao, Y. Xiao, X. Cheng, and S. An. 2015. Nitrogen‐enriched eutrophication promotes the invasion of Spartina alterniflora in coastal China. CLEAN–Soil, Air, Water 43: 244 – 250.
dc.identifier.citedreferenceZuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith. 2009. Mixed effects models and extensions in ecology with R. Springer, New York, New York, USA.
dc.identifier.citedreferencePetranka, J. W. 2010. Salamanders of the United States and Canada. Smithsonian Books, Washington, D.C., USA.
dc.identifier.citedreferenceAzevedo‐Santos, V. M., J. R. S. Vitule, F. M. Pelicice, E. García‐Berthou, and D. Simberloff. 2017. Nonnative fish to control Aedes mosquitoes: a controversial, harmful tool. BioScience 67: 84 – 90.
dc.identifier.citedreferenceBalciunas, D., and S. P. Lawler. 1995. Effects of basal resources, predation, and alternative prey in microcosm food chains. Ecology 76: 1327 – 1336.
dc.identifier.citedreferenceBeeton, A. M. 1965. Eutrophication of the St. Lawrence great lakes. Limnology and Oceanography 10: 240 – 254.
dc.identifier.citedreferenceBlanco, S., S. Romo, and M.‐J. Villena. 2004. Experimental study on the diet of mosquitofish ( Gambusia holbrooki ) under different ecological conditions in a shallow lake. International Review of Hydrobiology 89: 250 – 262.
dc.identifier.citedreferenceBlumenthal, D. M. 2006. Interactions between resource availability and enemy release in plant invasion. Ecology Letters 9: 887 – 895.
dc.identifier.citedreferenceBrinson, M. M., and A. I. Malvárez. 2002. Temperate freshwater wetlands: types, status, and threats. Environmental Conservation 29: 115 – 133.
dc.identifier.citedreferenceByers, J. E. 2002. Impact of non‐indigenous species on natives enhanced by anthropogenic alteration of selection regimes. Oikos 97: 449 – 458.
dc.identifier.citedreferenceCarpenter, S. R., and W. A. Brock. 2006. Rising variance: a leading indicator of ecological transition. Ecology Letters 9: 311 – 318.
dc.identifier.citedreferenceCarpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley, and V. H. Smith. 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559 – 568.
dc.identifier.citedreferenceCarpenter, S. R., E. H. Stanley, and M. J. Vander Zanden. 2011. State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annual Review of Environment and Resources 36: 75 – 99.
dc.identifier.citedreferenceChase, J. M. 2010. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328: 1388 – 1391.
dc.identifier.citedreferenceChase, J. M., and T. M. Knight. 2006. Effects of eutrophication and snails on Eurasian watermilfoil ( Myriophyllum spicatum ) invasion. Biological Invasions 8: 1643 – 1649.
dc.identifier.citedreferenceCoetzee, J. A., M. J. Byrne, and M. P. Hill. 2007. Impact of nutrients and herbivory by Eccritotarsus catarinensis on the biological control of water hyacinth, Eichhornia crassipes. Aquatic Botany 86: 179 – 186.
dc.identifier.citedreferenceCrooks, J. A., A. L. Chang, and G. M. Ruiz. 2011. Aquatic pollution increases the relative success of invasive species. Biological Invasions 13: 165 – 176.
dc.identifier.citedreferenceDahl, T. E. 2000. Status and trends of wetlands in the conterminous United States 1986 to 1997. US Fish and Wildlife Service, Onalaska, Wisconsin, USA.
dc.identifier.citedreferenceDavis, M. A., J. P. Grime, and K. Thompson. 2000. Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology 88: 528 – 534.
dc.identifier.citedreferenceDidham, R. K., J. M. Tylianakis, N. J. Gemmell, T. A. Rand, and R. M. Ewers. 2007. Interactive effects of habitat modification and species invasion on native species decline. Trends in Ecology and Evolution 22: 489 – 496.
dc.identifier.citedreferenceDodson, S. I., S. E. Arnott, and K. L. Cottingham. 2000. The relationship in lake communities between primary productivity and species richness. Ecology 81: 2662 – 2679.
dc.identifier.citedreferenceDowns, C. W. 1991. Fishes in California mosquito control. California Mosquito and Vector Control Association, Sacramento, California, USA.
dc.identifier.citedreferenceDukes, J. S., and H. A. Mooney. 1999. Does global change increase the success of biological invaders? Trends in Ecology and Evolution 14: 135 – 139.
dc.identifier.citedreferenceFargione, J., and D. Tilman. 2002. Competition and coexistence in terrestrial plants. Pages 165 – 206 in U. Sommer and B. Worm, editors. Competition and coexistence. Springer, New York, New York, USA.
dc.identifier.citedreferenceField, R., et al. 2009. Spatial species‐richness gradients across scales: a meta‐analysis. Journal of Biogeography 36: 132 – 147.
dc.identifier.citedreferenceFirn, J., A. S. MacDougall, S. Schmidt, and Y. M. Buckley. 2010. Early emergence and resource availability can competitively favour natives over a functionally similar invader. Oecologia 163: 775 – 784.
dc.identifier.citedreferenceFlores‐Moreno, H., et al. 2016. Climate modifies response of non‐native and native species richness to nutrient enrichment. Philosophical Transactions of the Royal Society B 371: 20150273.
dc.identifier.citedreferenceGarcía‐Berthou, E. 1999. Food of introduced mosquitofish: ontogenetic diet shift and prey selection. Journal of Fish Biology 55: 135 – 147.
dc.identifier.citedreferenceGonzález, A. L., J. S. Kominoski, M. Danger, S. Ishida, N. Iwai, and A. Rubach. 2010. Can ecological stoichiometry help explain patterns of biological invasions? Oikos 119: 779 – 790.
dc.identifier.citedreferenceGoodsell, J. A., and L. B. Kats. 1999. Effect of introduced mosquitofish on Pacific treefrogs and the role of alternative prey. Conservation Biology 13: 921 – 924.
dc.identifier.citedreferenceGrosholz, E. D., G. M. Ruiz, C. A. Dean, K. A. Shirley, J. L. Maron, and P. G. Connors. 2000. The impacts of a nonindigenous marine predator in a California bay. Ecology 81: 1206 – 1224.
dc.identifier.citedreferenceGunzburger, M. S., and J. Travis. 2005. Critical literature review of the evidence for unpalatability of amphibian eggs and larvae. Journal of Herpetology 2005: 547 – 571.
dc.identifier.citedreferenceHall Jr., R. O., J. L. Tank, and M. F. Dybdahl. 2003. Exotic snails dominate nitrogen and carbon cycling in a highly productive stream. Frontiers in Ecology and the Environment 1: 407 – 411.
dc.identifier.citedreferenceHolbrook, J. D., and N. J. Dorn. 2016. Fish reduce anuran abundance and decrease herpetofaunal species richness in wetlands. Freshwater Biology 61: 100 – 109.
dc.identifier.citedreferenceHu, L., and P. M. Bentler. 1999. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal 6: 1 – 55.
dc.identifier.citedreferenceHurlbert, S. H., and M. S. Mulla. 1981. Impacts of mosquitofish ( Gambusia affinis ) predation on plankton communities. Hydrobiologia 83: 125 – 151.
dc.identifier.citedreferenceHurlbert, S. H., J. Zedler, and D. Fairbanks. 1972. Ecosystem alteration by mosquitofish ( Gambusia affinis ) predation. Science 175: 639 – 641.
dc.identifier.citedreferenceHuryn, A. D. 1998. Ecosystem‐level evidence for top‐down and bottom‐up control of production in a grassland stream system. Oecologia 115: 173 – 183.
dc.identifier.citedreferenceJackson, M. C., R. Allen, J. Pegg, and J. R. Britton. 2013. Do trophic subsidies affect the outcome of introductions of a non‐native freshwater fish? Freshwater Biology 58: 2144 – 2153.
dc.identifier.citedreferenceJoseph, M. B., D. L. Preston, and P. T. Johnson. 2016. Integrating occupancy models and structural equation models to understand species occurrence. Ecology 97: 765 – 775.
dc.identifier.citedreferenceKline, R. B. 2015. Principles and practice of structural equation modeling. Guilford Publications, New York, New York, USA.
dc.identifier.citedreferenceKnorp, N. E., and N. J. Dorn. 2016. Mosquitofish predation and aquatic vegetation determine emergence patterns of dragonfly assemblages. Freshwater Science 35: 114 – 125.
dc.identifier.citedreferenceKolar, C. S., and D. M. Lodge. 2000. Freshwater nonindigenous species: interactions with other global changes. Pages 3 – 30 in H. A. Mooney and R. J. Hobbs, editors. Invasive species in a changing world. Island Press, Washington, D.C., USA.
dc.identifier.citedreferenceLancaster, H. F., and R. W. Drenner. 1990. Experimental mesocosm study of the separate and interaction effects of phosphorus and mosquitofish ( Gambusia affinis ) on plankton community structure. Canadian Journal of Fisheries and Aquatic Sciences 47: 471 – 479.
dc.identifier.citedreferenceLawler, S. P., D. Dritz, T. Strange, and M. Holyoak. 1999. Effects of introduced mosquitofish and bullfrogs on the threatened California red‐legged frog. Conservation Biology 13: 613 – 622.
dc.identifier.citedreferenceMacDougall, A. S., and R. Turkington. 2005. Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology 86: 42 – 55.
dc.identifier.citedreferenceMargaritora, F. G., O. Ferrara, and D. Vagaggini. 2001. Predatory impact of the mosquitofish ( Gambusia holbrooki Girard) on zooplanktonic populations in a pond at Tenuta di Castelporziano (Rome, Central Italy). Journal of Limnology 60: 189 – 193.
dc.identifier.citedreferenceMerkley, S. S., R. B. Rader, and G. B. Schaalje. 2015. Introduced western mosquitofish ( Gambusia affinis ) reduce the emergence of aquatic insects in a desert spring. Freshwater Science 34: 564 – 573.
dc.identifier.citedreferenceMills, E. L., J. H. Leach, J. T. Carlton, and C. L. Secor. 1994. Exotic species and the integrity of the Great Lakes. BioScience 44: 666 – 676.
dc.identifier.citedreferenceMills, M. D., R. B. Rader, and M. C. Belk. 2004. Complex interactions between native and invasive fish: the simultaneous effects of multiple negative interactions. Oecologia 141: 713 – 721.
dc.identifier.citedreferenceMittelbach, G. G., C. F. Steiner, S. M. Scheiner, K. L. Gross, H. L. Reynolds, R. B. Waide, M. R. Willig, S. I. Dodson, and L. Gough. 2001. What is the observed relationship between species richness and productivity? Ecology 82: 2381 – 2396.
dc.identifier.citedreferenceMoss, B., et al. 2004. Continental‐scale patterns of nutrient and fish effects on shallow lakes: synthesis of a pan‐European mesocosm experiment. Freshwater Biology 49: 1633 – 1649.
dc.identifier.citedreferenceNagdali, S. S., and P. K. Gupta. 2002. Impact of mass mortality of a mosquito fish, Gambusia affinis on the ecology of a fresh water eutrophic lake (Lake Naini Tal, India). Hydrobiologia 468: 45 – 51.
dc.identifier.citedreferenceNichols, F. H., J. E. Cloern, S. N. Luoma, and D. H. Peterson. 1986. The modification of an estuary. Science 231: 567 – 573.
dc.identifier.citedreferenceOdada, E. O., D. O. Olago, F. Bugenyi, K. Kulindwa, J. Karimumuryango, K. West, M. Ntiba, S. Wandiga, P. Aloo‐Obudho, and P. Achola. 2003. Environmental assessment of the East African Rift Valley lakes. Aquatic Sciences 65: 254 – 271.
dc.identifier.citedreferenceOgutu‐Ohwayo, R., R. E. Hecky, A. S. Cohen, and L. Kaufman. 1997. Human impacts on the African great lakes. Environmental Biology of Fishes 50: 117 – 131.
dc.identifier.citedreferencePenk, M. R., J. M. Jeschke, D. Minchin, and I. Donohue. 2016. Warming can enhance invasion success through asymmetries in energetic performance. Journal of Animal Ecology 85: 419 – 426.
dc.identifier.citedreferencePimentel, D., R. Zuniga, and D. Morrison. 2005. Update on the environmental and economic costs associated with alien‐invasive species in the United States. Ecological Economics 52: 273 – 288.
dc.identifier.citedreferencePitcher, T. J., and P. J. B. Hart. 1995. The impact of species changes in African lakes. Chapman and Hall, New York, New York, USA.
dc.identifier.citedreferencePreston, D. L., H. D. Hedman, E. R. Esfahani, E. M. Pena, C. E. Boland, K. B. Lunde, and P. T. Johnson. 2017. Responses of a wetland ecosystem to the controlled introduction of invasive fish. Freshwater Biology 62: 767 – 778.
dc.identifier.citedreferencePreston, D. L., J. S. Henderson, and P. T. Johnson. 2012. Community ecology of invasions: direct and indirect effects of multiple invasive species on aquatic communities. Ecology 93: 1254 – 1261.
dc.identifier.citedreferencePyke, G. H. 2008. Plague minnow or mosquito fish? A review of the biology and impacts of introduced Gambusia species. Annual Review of Ecology, Evolution, and Systematics 39: 171 – 191.
dc.identifier.citedreferencePyšek, P., and D. M. Richardson. 2010. Invasive species, environmental change and management, and health. Annual Review of Environment and Resources 35: 25 – 55.
dc.identifier.citedreferenceR Core Team. 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
dc.identifier.citedreferenceRahel, F. J., and J. D. Olden. 2008. Assessing the effects of climate change on aquatic invasive species. Conservation Biology 22: 521 – 533.
dc.identifier.citedreferenceReynolds, S. J. 2009. Impact of the introduced poeciliid Gambusia holbrooki on amphibians in southwestern Australia. Copeia 2009: 296 – 302.
dc.identifier.citedreferenceRicciardi, A. 2001. Facilitative interactions among aquatic invaders: Is an invasional meltdown occurring in the Great Lakes? Canadian Journal of Fisheries and Aquatic Sciences 58: 2513 – 2525.
dc.identifier.citedreferenceGosner, K. L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183 – 190.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.