Show simple item record

A roadmap for global synthesis of the plant tree of life

dc.contributor.authorEiserhardt, Wolf L.
dc.contributor.authorAntonelli, Alexandre
dc.contributor.authorBennett, Dominic J.
dc.contributor.authorBotigué, Laura R.
dc.contributor.authorBurleigh, J. Gordon
dc.contributor.authorDodsworth, Steven
dc.contributor.authorEnquist, Brian J.
dc.contributor.authorForest, Félix
dc.contributor.authorKim, Jan T.
dc.contributor.authorKozlov, Alexey M.
dc.contributor.authorLeitch, Ilia J.
dc.contributor.authorMaitner, Brian S.
dc.contributor.authorMirarab, Siavash
dc.contributor.authorPiel, William H.
dc.contributor.authorPérez‐escobar, Oscar A.
dc.contributor.authorPokorny, Lisa
dc.contributor.authorRahbek, Carsten
dc.contributor.authorSandel, Brody
dc.contributor.authorSmith, Stephen A.
dc.contributor.authorStamatakis, Alexandros
dc.contributor.authorVos, Rutger A.
dc.contributor.authorWarnow, Tandy
dc.contributor.authorBaker, William J.
dc.date.accessioned2018-05-15T20:13:32Z
dc.date.available2019-05-13T14:45:28Zen
dc.date.issued2018-03
dc.identifier.citationEiserhardt, Wolf L.; Antonelli, Alexandre; Bennett, Dominic J.; Botigué, Laura R. ; Burleigh, J. Gordon; Dodsworth, Steven; Enquist, Brian J.; Forest, Félix ; Kim, Jan T.; Kozlov, Alexey M.; Leitch, Ilia J.; Maitner, Brian S.; Mirarab, Siavash; Piel, William H.; Pérez‐escobar, Oscar A. ; Pokorny, Lisa; Rahbek, Carsten; Sandel, Brody; Smith, Stephen A.; Stamatakis, Alexandros; Vos, Rutger A.; Warnow, Tandy; Baker, William J. (2018). "A roadmap for global synthesis of the plant tree of life." American Journal of Botany 105(3): 614-622.
dc.identifier.issn0002-9122
dc.identifier.issn1537-2197
dc.identifier.urihttps://hdl.handle.net/2027.42/143648
dc.description.abstractProviding science and society with an integrated, upâ toâ date, high quality, open, reproducible and sustainable plant tree of life would be a huge service that is now coming within reach. However, synthesizing the growing body of DNA sequence data in the public domain and disseminating the trees to a diverse audience are often not straightforward due to numerous informatics barriers. While big synthetic plant phylogenies are being built, they remain static and become quickly outdated as new data are published and treeâ building methods improve. Moreover, the body of existing phylogenetic evidence is hard to navigate and access for nonâ experts. We propose that our community of botanists, tree builders, and informaticians should converge on a modular framework for data integration and phylogenetic analysis, allowing easy collaboration, updating, data sourcing and flexible analyses. With support from major institutions, this pipeline should be reâ run at regular intervals, storing trees and their metadata longâ term. Providing the trees to a diverse global audience through userâ friendly front ends and application development interfaces should also be a priority. Interactive interfaces could be used to solicit user feedback and thus improve data quality and to coordinate the generation of new data. We conclude by outlining a number of steps that we suggest the scientific community should take to achieve global phylogenetic synthesis.
dc.publisherWiley Periodicals, Inc.
dc.publisherUniversity of Chicago Press
dc.subject.othersampling
dc.subject.otherphyloinformatics
dc.subject.otherangiosperms
dc.subject.otherbryophytes
dc.subject.otherGenBank
dc.subject.othercyberinfrastructure
dc.subject.otherland plant phylogeny
dc.subject.othermegaphylogenies
dc.subject.otherphylogenomics
dc.subject.otherpteridophytes
dc.titleA roadmap for global synthesis of the plant tree of life
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbsecondlevelBotany
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143648/1/ajb21041.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143648/2/ajb21041_am.pdf
dc.identifier.doi10.1002/ajb2.1041
dc.identifier.sourceAmerican Journal of Botany
dc.identifier.citedreferencePiel, W., L. Chan, M. Dominus, J. Ruan, R. Vos, and V. Tannen. 2009. TreeBASE v. 2: a database of phylogenetic knowledge.
dc.identifier.citedreferenceLaffan, S. W., E. Lubarsky, and D. F. Rosauer. 2010. Biodiverse, a tool for the spatial analysis of biological and related diversity. Ecography 33: 643 â 647.
dc.identifier.citedreferenceLafond, M., C. Chauve, N. Elâ Mabrouk, and A. Ouangraoua. 2017. Gene tree construction and correction using supertree and reconciliation. IEEE/ACM Transactions on Computational Biology and Bioinformatics, early online. https://doi.org/10.1109/TCBB.2017.2720581.
dc.identifier.citedreferenceLeebensâ Mack, J., T. Vision, E. Brenner, J. E. Bowers, S. Cannon, M. J. Clement, C. W. Cunningham, et al. 2006. Taking the first steps towards a standard for reporting on phylogenies: Minimum Information About a Phylogenetic Analysis (MIAPA). OMICS 10: 231 â 237.
dc.identifier.citedreferenceLi, B., J. S. Lopes, P. G. Foster, T. M. Embley, and C. J. Cox. 2014. Compositional biases among synonymous substitutions cause conflict between gene and protein trees for plastid origins. Molecular Biology and Evolution 31: 1697 â 1709.
dc.identifier.citedreferenceLiu, L., D. K. Pearl, and T. Buckley. 2007. Species trees from gene trees: reconstructing Bayesian posterior distributions of a species phylogeny using estimated gene tree distributions. Systematic Biology 56: 504 â 514.
dc.identifier.citedreferenceLiu, X., M. Liang, R. S. Etienne, Y. Wang, C. Staehelin, and S. Yu. 2012. Experimental evidence for a phylogenetic Janzenâ Connell effect in a subtropical forest. Ecology Letters 15: 111 â 118.
dc.identifier.citedreferenceMacDonald, T., and E. O. Wiley. 2012. Communicating phylogeny: evolutionary tree diagrams in museums. Evolution: Education and Outreach 5: 14 â 28.
dc.identifier.citedreferenceMagurran, A. E. 2013. Measuring biological diversity. John Wiley, Chichester, UK.
dc.identifier.citedreferenceMaitner, B. S., B. Boyle, N. Casler, R. Condit, J. Donoghue, S. M. Durán, D. Guaderrama, et al. 2018. The bien r package: A tool to access the Botanical Information and Ecology Network (BIEN) database. Methods in Ecology and Evolution 9: 373 â 379.
dc.identifier.citedreferenceMandel, J. R., R. B. Dikow, V. A. Funk, R. R. Masalia, S. E. Staton, A. Kozik, R. W. Michelmore, et al. 2014. A target enrichment method for gathering phylogenetic information from hundreds of loci: an example from the Compositae. Applications in Plant Sciences 2: 1300085.
dc.identifier.citedreferenceMcTavish, E. J., B. T. Drew, B. Redelings, and K. A. Cranston. 2017. How and why to build a unified tree of life. BioEssays 39: 1700114.
dc.identifier.citedreferenceMcTavish, E. J., C. E. Hinchliff, J. F. Allman, J. W. Brown, K. A. Cranston, M. T. Holder, J. A. Rees, and S. A. Smith. 2015. Phylesystem: a gitâ based data store for communityâ curated phylogenetic estimates. Bioinformatics 31: 2794 â 2800.
dc.identifier.citedreferenceMirarab, S., R. Reaz, M. S. Bayzid, T. Zimmermann, M. S. Swenson, and T. Warnow. 2014. ASTRAL: genomeâ scale coalescentâ based species tree estimation. Bioinformatics 30: i541 â 548.
dc.identifier.citedreferenceNguyen, L.â T., H. A. Schmidt, A. Von Haeseler, and B. Q. Minh. 2015. IQâ TREE: a fast and effective stochastic algorithm for estimating maximumâ likelihood phylogenies. Molecular Biology and Evolution 32: 268 â 274.
dc.identifier.citedreferenceNilsson, R. H., M. Ryberg, E. Kristiansson, K. Abarenkov, K.â H. Larsson, and U. Kõljalg. 2006. Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLoS One 1: e59.
dc.identifier.citedreferenceNormile, D. 2017. Plant scientists plan massive effort to sequence 10,000 genomes. Website http://www.sciencemag.org/news/2017/07/plant-scientists-plan-massive-effort-sequence-10000-genomes.
dc.identifier.citedreferencePanahiazar, M., A. P. Sheth, A. Ranabahu, R. A. Vos, and J. Leebensâ Mack. 2013. Advancing data reuse in phyloinformatics using an ontologyâ driven Semantic Web approach. BMC Medical Genomics 6: S5.
dc.identifier.citedreferencePennisi, E. 2017. Biologists propose to sequence the DNA of all life on Earth. Website http://www.sciencemag.org/news/2017/02/biologists-propose-sequence-dna-all-life-earth.
dc.identifier.citedreferencePeters, R. S., L. Krogmann, C. Mayer, A. Donath, S. Gunkel, K. Meusemann, A. Kozlov, et al. 2017. Evolutionary history of the hymenoptera. Current Biology 27: 1013 â 1018.
dc.identifier.citedreferencePPG, I. 2016. A communityâ derived classification for extant lycophytes and ferns. Journal of Systematics and Evolution 54: 563 â 603.
dc.identifier.citedreferenceProença, V., L. J. Martin, H. M. Pereira, M. Fernandez, L. McRae, J. Belnap, M. Böhm, et al. 2017. Global biodiversity monitoring: from data sources to essential biodiversity variables. Biological Conservation 213: 256 â 263.
dc.identifier.citedreferenceRBG Kew. 2016. The state of the world’s plants report 2016. Royal Botanic Gardens, Kew, Richmond, Surrey, UK. Available at https://stateoftheworldsplants.com/2016/.
dc.identifier.citedreferenceRBG Kew. 2017. The state of the world’s plants report 2017. Royal Botanic Gardens, Kew, Richmond, Surrey, UK. Available at https://stateoftheworldsplants.com/2017/.
dc.identifier.citedreferenceRedelings, B. D., and M. T. Holder. 2017. A supertree pipeline for summarizing phylogenetic and taxonomic information for millions of species. PeerJ 5: e3058.
dc.identifier.citedreferenceRees, J. A., and K. Cranston. 2017. Automated assembly of a reference taxonomy for phylogenetic data synthesis. Biodiversity Data Journal 5: e12581.
dc.identifier.citedreferenceRosindell, J., and L. J. Harmon. 2012. OneZoom: a fractal explorer for the tree of life. PLoS Biology 10: e1001406.
dc.identifier.citedreferenceRuhfel, B. R., M. A. Gitzendanner, P. S. Soltis, D. E. Soltis, and J. G. Burleigh. 2014. From algae to angiospermsâ inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evolutionary Biology 14: 23.
dc.identifier.citedreferenceRulik, B., J. Eberle, L. Von Der Mark, J. Thormann, M. Jung, F. Köhler, W. Apfel, et al. 2017. Using taxonomic consistency with semiâ automated data preâ processing for high quality DNA barcodes. Methods in Ecology and Evolution 8: 1878 â 1887.
dc.identifier.citedreferenceSanderson, M. J., M. M. McMahon, A. Stamatakis, D. J. Zwickl, and M. Steel. 2015. Impacts of terraces on phylogenetic inference. Systematic Biology 64: 709 â 726.
dc.identifier.citedreferenceShen, X.â X., C. T. Hittinger, and A. Rokas. 2017. Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nature Ecology and Evolution 1: 126.
dc.identifier.citedreferenceSmith, S. A., and J. W. Brown. 2018. Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany 105: 302 â 314.
dc.identifier.citedreferenceSolísâ Lemus, C., and C. Ané. 2016. Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting. PLoS Genetics 12: e1005896.
dc.identifier.citedreferenceStoltzfus, A., B. O’Meara, J. Whitacre, R. Mounce, E. L. Gillespie, S. Kumar, D. F. Rosauer, and R. A. Vos. 2012. Sharing and reâ use of phylogenetic trees (and associated data) to facilitate synthesis. BMC Research Notes 5: 574.
dc.identifier.citedreferenceStoltzfus, A., H. Lapp, N. Matasci, H. Deus, B. Sidlauskas, C. M. Zmasek, G. Vaidya, et al. 2013. Phylotastic! Making treeâ ofâ life knowledge accessible, reusable and convenient. BMC Bioinformatics 14: 158.
dc.identifier.citedreferenceStrauss, S. Y., C. O. Webb, and N. Salamin. 2006. Exotic taxa less related to native species are more invasive. Proceedings of the National Academy of Sciences, USA 103: 5841 â 5845.
dc.identifier.citedreferenceSun, M., D. E. Soltis, P. S. Soltis, X. Zhu, J. G. Burleigh, and Z. Chen. 2015. Deep phylogenetic incongruence in the angiosperm clade Rosidae. Molecular Phylogenetics and Evolution 83: 156 â 166.
dc.identifier.citedreferenceVachaspati, P., and T. Warnow. 2017. FastRFS: fast and accurate Robinsonâ Foulds Supertrees using constrained exact optimization. Bioinformatics 33: 631 â 639.
dc.identifier.citedreferenceVan De Peer, Y., E. Mizrachi, and K. Marchal. 2017. The evolutionary significance of polyploidy. Nature Reviews Genetics 18: 411 â 424.
dc.identifier.citedreferenceWalker, J. F., Y. Yang, T. Feng, A. Timoneda, J. Mikenas, V. Hutchinson, C. Edwards, et al. 2018. From cacti to carnivores: improved phylotranscriptomic sampling and hierarchical homology inference provide further insight to the evolution of Caryophyllales. American Journal of Botany 105.
dc.identifier.citedreferenceWebb, C. O., and M. J. Donoghue. 2005. Phylomatic: tree assembly for applied phylogenetics. Molecular Ecology Notes 5: 181 â 183.
dc.identifier.citedreferenceWeitemier, K., S. C. K. Straub, R. C. Cronn, M. Fishbein, R. Schmickl, A. McDonnell, and A. Liston. 2014. Hybâ Seq: Combining target enrichment and genome skimming for plant phylogenomics. Applications in Plant Sciences 2: 1400042.
dc.identifier.citedreferenceWickett, N. J., S. Mirarab, N. Nguyen, T. Warnow, E. Carpenter, N. Matasci, S. Ayyampalayam, et al. 2014. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proceedings of the National Academy of Sciences, USA 111: E4859 â E4868.
dc.identifier.citedreferenceWood, T. E., N. Takebayashi, M. S. Barker, I. Mayrose, P. B. Greenspoon, and L. H. Rieseberg. 2009. The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences, USA 106: 13875 â 13879.
dc.identifier.citedreferenceYang, Y., and S. A. Smith. 2014. Orthology inference in nonmodel organisms using transcriptomes and lowâ coverage genomes: improving accuracy and matrix occupancy for phylogenomics. Molecular Biology and Evolution 31: 3081 â 3092.
dc.identifier.citedreferenceYu, Y., J. Dong, K. J. Liu, and L. Nakhleh. 2014. Maximum likelihood inference of reticulate evolutionary histories. Proceedings of the National Academy of Sciences, USA 111: 16448 â 16453.
dc.identifier.citedreferenceYu, Y., and L. Nakhleh. 2015. A maximum pseudoâ likelihood approach for phylogenetic networks. BMC Genomics 16 ( supplement 10 ): S10.
dc.identifier.citedreferenceZanne, A. E., D. C. Tank, W. K. Cornwell, J. M. Eastman, S. A. Smith, R. G. Fitzjohn, D. J. McGlinn, et al. 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506: 89 â 92.
dc.identifier.citedreferenceZhang, C., E. Sayyari, and S. Mirarab. 2017. ASTRALâ III: increased scalability and impacts of contracting low support branches. In J. Meidanis, and L. Nakleh [eds.], Comparative genomics, RECOMBâ CG 2017. Lecture Notes in Computer Science, vol. 10562, 53 â 75. Springer, Cham, Switzerland.
dc.identifier.citedreferenceAkanni, W. A., M. Wilkinson, C. J. Creevey, P. G. Foster, and D. Pisani. 2015. Implementing and testing Bayesian and maximumâ likelihood supertree methods in phylogenetics. Royal Society Open Science 2: 140436.
dc.identifier.citedreferenceAné, C., B. Larget, D. A. Baum, S. D. Smith, and A. Rokas. 2007. Bayesian estimation of concordance among gene trees. Molecular Biology and Evolution 24: 412 â 426.
dc.identifier.citedreferenceAngiosperm Phylogeny Group. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1 â 20.
dc.identifier.citedreferenceAntonelli, A., H. Hettling, F. L. Condamine, K. Vos, R. H. Nilsson, M. J. Sanderson, H. Sauquet, et al. 2017. Toward a selfâ updating platform for estimating rates of speciation and migration, ages, and relationships of taxa. Systematic Biology 66: 152 â 166.
dc.identifier.citedreferenceBayzid, M. S., T. Hunt, and T. Warnow. 2014. Disk covering methods improve phylogenomic analyses. BMC Genomics 15 ( supplement 6 ): S7.
dc.identifier.citedreferenceBerney, C., A. Ciuprina, S. Bender, J. Brodie, V. Edgcomb, E. Kim, J. Rajan, et al. 2017. UniEuk: time to speak a common language in protistology!. Journal of Eukaryotic Microbiology 64: 407 â 411.
dc.identifier.citedreferenceBoussau, B., G. J. Szöllosi, L. Duret, M. Gouy, E. Tannier, and V. Daubin. 2013. Genomeâ scale coestimation of species and gene trees. Genome Research 23: 323 â 330.
dc.identifier.citedreferenceBoyle, B., N. Hopkins, Z. Lu, J. A. Raygoza Garay, D. Mozzherin, T. Rees, N. Matasci, et al. 2013. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics 14: 16.
dc.identifier.citedreferenceBrooks, D. R., and D. A. Mclennan. 1991. Phylogeny, ecology, and behavior: a research program in comparative biology. University of Chicago Press, Chicago, IL, USA.
dc.identifier.citedreferenceCBOL Plant Working Group. 2009. A DNA barcode for land plants. Proceedings of the National Academy of Sciences, USA 106: 12794 â 12797.
dc.identifier.citedreferenceChen, I. M. A., V. M. Markowitz, K. Chu, K. Palaniappan, E. Szeto, M. Pillay, A. Ratner, et al. 2017. IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Research 45: D507 â D516.
dc.identifier.citedreferenceChifman, J., and L. Kubatko. 2014. Quartet inference from SNP data under the coalescent model. Bioinformatics 30: 3317 â 3324.
dc.identifier.citedreferenceCox, C. J., B. Li, P. G. Foster, T. M. Embley, and P. Civán. 2014. Conflicting phylogenies for early land plants are caused by composition biases among synonymous substitutions. Systematic Biology 63: 272 â 279.
dc.identifier.citedreferenceDe La Torre, A. R., Z. Li, Y. Van De Peer, and P. K. Ingvarsson. 2017. Contrasting rates of molecular evolution and patterns of selection among gymnosperms and flowering plants. Molecular Biology and Evolution 34: 1363 â 1377.
dc.identifier.citedreferenceDodsworth, S., A. R. Leitch, and I. J. Leitch. 2015. Genome size diversity in angiosperms and its influence on gene space. Current Opinion in Genetics and Development 35: 73 â 78.
dc.identifier.citedreferenceDrew, B. T., R. Gazis, P. Cabezas, K. S. Swithers, J. Deng, R. Rodriguez, L. A. Katz, et al. 2013. Lost branches on the tree of life. PLoS Biology 11: e1001636.
dc.identifier.citedreferenceDunn, C. W., M. Howison, and F. Zapata. 2013. Agalma: an automated phylogenomics workflow. BMC Bioinformatics 14: 330.
dc.identifier.citedreferenceEnquist, B. J., R. Condit, R. K. Peet, M. Schildhauer, and B. M. Thiers. 2016. Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. PeerJ Preprints e2615v2.
dc.identifier.citedreferenceFaith, D. P. 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation 61: 1 â 10.
dc.identifier.citedreferenceFelsenstein, J. 1985. Phylogenies and the comparative method. American Naturalist 125: 1 â 15.
dc.identifier.citedreferenceFolk, R. A., M. Sun, P. S. Soltis, S. A. Smith, D. E. Soltis, and R. P. Guralnick. 2018. Wrestling with Rosids: Challenges of comprehensive taxon sampling in comparative biology. American Journal of Botany 105 (in press).
dc.identifier.citedreferenceFoster, P. G., C. J. Cox, and T. M. Embley. 2009. The primary divisions of life: a phylogenomic approach employing compositionâ heterogeneous methods. Philosophical Transactions of the Royal Society of London, B, Biological Sciences 364: 2197 â 2207.
dc.identifier.citedreferenceFreyman, W. A. 2015. SUMAC: Constructing phylogenetic supermatrices and assessing partially decisive taxon coverage. Evolutionary Bioinformatics Online 11: 263 â 266.
dc.identifier.citedreferenceGitzendanner, M. A., P. S. Soltis, G. K.â S. Wong, B. R. Ruhfel, and D. E. Soltis. 2018. Plastid phylogenomic analysis of green plants: a billion years of evolutionary history. American Journal of Botany 105: 291 â 301.
dc.identifier.citedreferenceGoff, S. A., M. Vaughn, S. Mckay, E. Lyons, A. E. Stapleton, D. Gessler, N. Matasci, et al. 2011. The iPlant Collaborative: cyberinfrastructure for plant biology. Frontiers in Plant Science 2: 34.
dc.identifier.citedreferenceGratton, P., S. Marta, G. Bocksberger, M. Winter, E. Trucchi, and H. Kühl. 2017. A world of sequences: Can we use georeferenced nucleotide databases for a robust automated phylogeography? Journal of Biogeography 44: 475 â 486.
dc.identifier.citedreferenceHeled, J., and A. J. Drummond. 2010. Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution 27: 570 â 580.
dc.identifier.citedreferenceHennig, W. 1950. Grundzüge einer Theorie der phylogenetischen Systematik. Deutscher Zentralverlag, Berlin, Germany.
dc.identifier.citedreferenceHeyduk, K., D. W. Trapnell, C. F. Barrett, and J. Leebensâ Mack. 2016. Phylogenomic analyses of species relationships in the genus Sabal (Arecaceae) using targeted sequence capture. Biological Journal of the Linnean Society of London 117: 106 â 120.
dc.identifier.citedreferenceHinchliff, C. E., and S. A. Smith. 2014. Some limitations of public sequence data for phylogenetic inference (in plants). PLoS One 9: e98986.
dc.identifier.citedreferenceHinchliff, C. E., S. A. Smith, J. F. Allman, J. G. Burleigh, R. Chaudhary, L. M. Coghill, K. A. Crandall, et al. 2015. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proceedings of the National Academy of Sciences, USA 112: 12764 â 12769.
dc.identifier.citedreferenceJarvis, E. D., S. Mirarab, A. J. Aberer, B. Li, P. Houde, C. Li, S. Y. W. Ho, et al. 2014. Wholeâ genome analyses resolve early branches in the tree of life of modern birds. Science 346: 1320 â 1331.
dc.identifier.citedreferenceJenkins, K. P. 2009. Evolution in biology education: sparking imaginations and supporting learning. Evolution: Education and Outreach 2: 347 â 348.
dc.identifier.citedreferenceJetz, W., J. Cavenderâ Bares, R. Pavlick, D. Schimel, F. W. Davis, G. P. Asner, R. Guralnick, et al. 2016. Monitoring plant functional diversity from space. Nature Plants 2: 16024.
dc.identifier.citedreferenceJoppa, L. N., B. O’Connor, P. Visconti, C. Smith, J. Geldmann, M. Hoffmann, J. E. M. Watson, et al. 2016. Big data and biodiversity. Filling in biodiversity threat gaps. Science 352: 416 â 418.
dc.identifier.citedreferenceKattge, J., S. Díaz, S. Lavorel, I. C. Prentice, P. Leadley, G. Bönisch, E. Garnier, et al. 2011. TRY â a global database of plant traits. Global Change Biology 17: 2905 â 2935.
dc.identifier.citedreferenceKembel, S. W., P. D. Cowan, M. R. Helmus, W. K. Cornwell, H. Morlon, D. D. Ackerly, S. P. Blomberg, and C. O. Webb. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26: 1463 â 1464.
dc.identifier.citedreferenceKõljalg, U., K.â H. Larsson, K. Abarenkov, R. H. Nilsson, I. J. Alexander, U. Eberhardt, S. Erland, et al. 2005. UNITE: a database providing webâ based methods for the molecular identification of ectomycorrhizal fungi. New Phytologist 166: 1063 â 1068.
dc.identifier.citedreferenceKozlov, A. M., A. J. Aberer, and A. Stamatakis. 2015. ExaML version 3: a tool for phylogenomic analyses on supercomputers. Bioinformatics 31: 2577 â 2579.
dc.identifier.citedreferenceKozlov, A. M., J. Zhang, P. Yilmaz, F. O. Glöckner, and A. Stamatakis. 2016. Phylogenyâ aware identification and correction of taxonomically mislabeled sequences. Nucleic Acids Research 44: 5022 â 5033.
dc.identifier.citedreferenceKumar, S., G. Stecher, M. Suleski, and S. B. Hedges. 2017. TimeTree: A resource for timelines, timetrees, and divergence times. Molecular Biology and Evolution 34: 1812 â 1819.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.