Show simple item record

Programmable Selfâ Locking Origami Mechanical Metamaterials

dc.contributor.authorFang, Hongbin
dc.contributor.authorChu, Shih‐cheng A.
dc.contributor.authorXia, Yutong
dc.contributor.authorWang, Kon‐well
dc.date.accessioned2018-05-15T20:13:36Z
dc.date.available2019-06-03T15:24:18Zen
dc.date.issued2018-04
dc.identifier.citationFang, Hongbin; Chu, Shih‐cheng A. ; Xia, Yutong; Wang, Kon‐well (2018). "Programmable Selfâ Locking Origami Mechanical Metamaterials." Advanced Materials 30(15): n/a-n/a.
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.urihttps://hdl.handle.net/2027.42/143652
dc.description.abstractDeveloping mechanical metamaterials with programmable properties is an emerging topic receiving wide attention. While the programmability mainly originates from structural multistability in previously designed metamaterials, here it is shown that nonflatâ foldable origami provides a new platform to achieve programmability via its intrinsic selfâ locking and reconfiguration capabilities. Working with the singleâ collinear degreeâ 4 vertex origami tessellation, it is found that each unit cell can selfâ lock at a nonflat configuration and, therefore, possesses wide design space to program its foldability and relative density. Experiments and numerical analyses are combined to demonstrate that by switching the deformation modes of the constituent cell from prelocking folding to postlocking pressing, its stiffness experiences a sudden jump, implying a limitingâ stopper effect. Such a stiffness jump is generalized to a multisegment piecewise stiffness profile in a multilayer model. Furthermore, it is revealed that via strategically switching the constituent cells’ deformation modes through passive or active means, the nâ layer metamaterial’s stiffness is controllable among 2n target stiffness values. Additionally, the piecewise stiffness can also trigger bistable responses dynamically under harmonic excitations, highlighting the metamaterial’s rich dynamic performance. These unique characteristics of selfâ locking origami present new paths for creating programmable mechanical metamaterials with in situ controllable mechanical properties.An origami mechanical metamaterial with programmable lockingâ induced piecewise stiffness is demonstrated. The kinematical and mechanical properties of the metamaterial can be strategically tuned by switching the deformation mode of the constituent cells between prelocking folding and postlocking pressing. The capabilities uncovered present new pathways for achieving programmability in metamaterials and metastructures.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpiecewise stiffness
dc.subject.otherdegreeâ 4 vertex origami
dc.subject.othermechanical metamaterials
dc.subject.othermetastrucutres
dc.subject.otherorigami dynamics
dc.titleProgrammable Selfâ Locking Origami Mechanical Metamaterials
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143652/1/adma201706311_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143652/2/adma201706311-sup-0001-S1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143652/3/adma201706311.pdf
dc.identifier.doi10.1002/adma.201706311
dc.identifier.sourceAdvanced Materials
dc.identifier.citedreferenceV. B. Shenoy, D. H. Gracias, MRS Bull. 2012, 37, 847.
dc.identifier.citedreferenceL. H. Dudte, E. Vouga, T. Tachi, L. Mahadevan, Nat. Mater. 2016, 15, 583.
dc.identifier.citedreferenceJ. T. B. Overvelde, J. C. Weaver, C. Hoberman, K. Bertoldi, Nature 2017, 541, 347.
dc.identifier.citedreferenceJ. L. Silverberg, A. A. Evans, L. McLeod, R. C. Hayward, T. Hull, C. D. Santangelo, I. Cohen, Science 2014, 345, 647.
dc.identifier.citedreferenceS. Li, K. W. Wang, J. R. Soc., Interface 2015, 12, 20150639.
dc.identifier.citedreferenceS. Waitukaitis, R. Menaut, B. G. Chen, M. van Hecke, Phys. Rev. Lett. 2015, 114, 55503.
dc.identifier.citedreferenceH. Fang, K. W. Wang, S. Li, Extreme Mech. Lett. 2017, 17, 7.
dc.identifier.citedreferenceH. Fang, S. Li, H. Ji, K. W. Wang, Phys. Rev. E 2017, 95, 52211.
dc.identifier.citedreferenceE. T. Filipov, T. Tachi, G. H. Paulino, Proc. Natl. Acad. Sci. USA 2015, 112, 12321.
dc.identifier.citedreferenceM. Thota, K. W. Wang, J. Appl. Phys. 2017, 122, 154901.
dc.identifier.citedreferenceZ. Song, C. Lv, M. Liang, V. Sanphuang, K. Wu, B. Chen, Z. Zhao, J. Bai, X. Wang, J. L. Volakis, L. Wang, X. He, Y. Yao, S. Tongay, H. Jiang, Small 2016, 12, 5401.
dc.identifier.citedreferenceM. Schenk, S. D. Guest, Proc. Natl. Acad. Sci. USA 2013, 110, 3276.
dc.identifier.citedreferenceS. Li, K. W. Wang, Smart Mater. Struct. 2015, 24, 105031.
dc.identifier.citedreferenceS. Waitukaitis, M. van Hecke, Phys. Rev. E 2016, 93, 23003.
dc.identifier.citedreferenceH. Fang, S. Li, H. Ji, K. W. Wang, Phys. Rev. E 2016, 94, 43002.
dc.identifier.citedreferenceH. Fang, S. Li, K. W. Wang, Proc. R. Soc. London, Ser. A 2016, 472, 20160682.
dc.identifier.citedreferenceX. Shui, S. Wang, Mech. Syst. Signal Process. 2018, 100, 330.
dc.identifier.citedreferenceH. Liu, C. Lee, T. Kobayashi, C. J. Tay, C. Quan, Smart Mater. Struct. 2012, 21, 35005.
dc.identifier.citedreferenceD. M. Running, J. B. Ligon, I. Miskioglu, J. Vib. Control 2004, 10, 1775.
dc.identifier.citedreferenceN. S. Shaar, G. Barbastathis, C. Livermore, J. Microelectromech. Syst. 2015, 24, 1043.
dc.identifier.citedreferenceD. Deng, Y. Chen, J. Mech. Des. 2014, 137, 21701.
dc.identifier.citedreferenceT. G. Leong, P. A. Lester, T. L. Koh, E. K. Call, D. H. Gracias, Langmuir 2007, 23, 8747.
dc.identifier.citedreferenceS. Pandey, M. Ewing, A. Kunas, N. Nguyen, D. H. Gracias, G. Menon, Proc. Natl. Acad. Sci. USA 2011, 108, 19885.
dc.identifier.citedreferenceS. M. Felton, M. T. Tolley, B. Shin, C. D. Onal, E. D. Demaine, D. Rus, R. J. Wood, Soft Matter 2013, 9, 7688.
dc.identifier.citedreferenceG. W. Milton, A. V. Cherkaev, J. Eng. Mater. Technol. 1995, 117, 483.
dc.identifier.citedreferenceM. Kadic, T. Bückmann, N. Stenger, M. Thiel, M. Wegener, Appl. Phys. Lett. 2012, 100, 191901.
dc.identifier.citedreferenceH. M. A. Kolken, A. A. Zadpoor, RSC Adv. 2017, 7, 5111.
dc.identifier.citedreferenceX. Hou, V. V. Silberschmidt, in Mechanics of Advanced Materials: Analysis of Properties and Performance, (Eds: V. V. Silberschmidt, V. P. Matveenko ), Springer, Cham, Switzerland 2015, pp. 155 â 179.
dc.identifier.citedreferenceA. A. Zadpoor, Mater. Horiz. 2016, 3, 371.
dc.identifier.citedreferenceC. Coulais, J. T. B. Overvelde, L. A. Lubbers, K. Bertoldi, M. Van Hecke, Phys. Rev. Lett. 2015, 115, 1.
dc.identifier.citedreferenceA. Rafsanjani, A. Akbarzadeh, D. Pasini, Adv. Mater. 2015, 27, 5931.
dc.identifier.citedreferenceS. Shan, S. H. Kang, J. R. Raney, P. Wang, L. Fang, F. Candido, J. A. Lewis, K. Bertoldi, Adv. Mater. 2015, 27, 4296.
dc.identifier.citedreferenceR. L. Harne, K. W. Wang, Smart Mater. Struct. 2013, 22, 23001.
dc.identifier.citedreferenceR. L. Harne, K. W. Wang, Harnessing Bistable Structural Dynamics: For Vibration Control, Energy Harvesting, and Sensing, John Wiley and Sons, Chichester, UK 2017.
dc.identifier.citedreferenceB. Florijn, C. Coulais, M. van Hecke, Phys. Rev. Lett. 2014, 113, 175503.
dc.identifier.citedreferenceJ. Shim, S. Shan, A. Košmrlj, S. H. Kang, E. R. Chen, J. C. Weaver, K. Bertoldi, Soft Matter 2013, 9, 8198.
dc.identifier.citedreferenceA. Rafsanjani, D. Pasini, Extreme Mech. Lett. 2016, 9, 291.
dc.identifier.citedreferenceR. L. Harne, Z. Wu, K. W. Wang, J. Mech. Des. 2015, 138, 21402.
dc.identifier.citedreferenceZ. Wu, Y. Zheng, K. W. Wang, arXiv Prepr. 2017, arXiv:1709.01800.
dc.identifier.citedreferenceY. Shan, M. Philen, A. Lotfi, S. Li, C. E. Bakis, C. D. Rahn, K. W. Wang, J. Intell. Mater. Syst. Struct. 2008, 20, 443.
dc.identifier.citedreferenceN. Kidambi, R. L. Harne, K. W. Wang, Smart Mater. Struct. 2017, 26.
dc.identifier.citedreferenceA. Lebée, Int. J. Space Struct. 2015, 30, 55.
dc.identifier.citedreferenceC. L. Randall, E. Gultepe, D. H. Gracias, Trends Biotechnol. 2012, 30, 138.
dc.identifier.citedreferenceS. Felton, M. Tolley, E. Demaine, D. Rus, R. Wood, Science 2014, 345, 644.
dc.identifier.citedreferenceP. M. Reis, F. López Jiménez, J. Marthelot, Proc. Natl. Acad. Sci. USA 2015, 112, 201516974.
dc.identifier.citedreferenceM. Thota, S. Li, K. W. Wang, Phys. Rev. B 2017, 95, 64307.
dc.identifier.citedreferenceS. Li, H. Fang, K. W. Wang, Phys. Rev. Lett. 2016, 117, 114301.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.