Show simple item record

Probing Nucleic Acid Structure with Shape‐Selective Rhodium and Ruthenium Complexes

dc.contributor.authorJackson, Brian A.
dc.contributor.authorBarton, Jacqueline K.
dc.date.accessioned2018-05-15T20:13:46Z
dc.date.available2018-05-15T20:13:46Z
dc.date.issued2000-02
dc.identifier.citationJackson, Brian A.; Barton, Jacqueline K. (2000). "Probing Nucleic Acid Structure with Shape‐Selective Rhodium and Ruthenium Complexes." Current Protocols in Nucleic Acid Chemistry 00(1): 6.2.1-6.2.39.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/143661
dc.description.abstractIn this unit, transition metal complexes are used as photochemical probes for the structure of RNA and DNA. The transition metal ion provides a rigid substitutionally inert framework and an octahedral geometry for ligand coordination. The complexes can be constructed to define shapes, symmetries, and functionalities that complement those of the nucleic acid target. Complex formation is easily detected by light‐induced nucleic acid cleavage. The modular construction of the complexes makes it possible to generate probes to examine a wide variety of structural characteristics of nucleic acids.
dc.publisherWiley Periodicals, Inc.
dc.publisherHumana Press
dc.titleProbing Nucleic Acid Structure with Shape‐Selective Rhodium and Ruthenium Complexes
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143661/1/cpnc0602.pdf
dc.identifier.doi10.1002/0471142700.nc0602s00
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceLin, C‐T., Böttcher, W., Chou, M., Creutz, C., and Sutin, N. 1976. Mechanism of the quenching of the emission of substituted polypyridine‐ ruthenium(II) complexes by iron(III), chromium(III), and europium(III) ions. J. Am. Chem. Soc 98: 6536 ‐ 6544.
dc.identifier.citedreferenceMaxam, A. and Gilbert, W. 1980. Sequencing end‐labeled DNA with base‐specific chemical cleavages. Methods Enzymol. 65: 499 ‐ 560.
dc.identifier.citedreferenceMei, H.Y. and Barton, J.K. 1986. Chiral probe for A‐form helices of DNA and RNA: Tris(tetramethylphenanthroline)ruthenium(II). J. Am. Chem. Soc. 108: 7414 ‐ 7416.
dc.identifier.citedreferenceMei, H.Y. and Barton, J.K. 1988. Tris(tetramethylphenanthroline)ruthenium(II): A chiral probe that cleaves A conformations. Proc. Natl. Acad. Sci. U.S.A. 85: 1339 ‐ 1343.
dc.identifier.citedreferenceMüller, B.C., Raphael, A.L., and Barton, J.K. 1987. Evidence for altered DNA conformations in the simian virus genome: Site‐specific DNA cleavage by the chiral complex L ‐tris(4,7‐diphenyl‐1,10‐phenanthroline)cobalt(III). Proc. Natl. Acad. Sci. U.S.A 84: 1764 ‐ 1768.
dc.identifier.citedreferenceMürner, H., Jackson, B.A., and Barton, J.K. 1998. A versatile synthetic approach to rhodium(III) diimine metallointercalators: Condensation of o ‐quinones with coordinated cis ‐ammines. Inorg. Chem. 37: 3007 ‐ 3012.
dc.identifier.citedreferenceNeenhold, H.R. and Rana, T.M. 1995. Major groove opening at the HIV‐1 Tat‐binding site of TAR RNA evidenced by a rhodium probe. Biochemistry. 34: 6303 ‐ 6309.
dc.identifier.citedreferencePyle, A.M., Long, E.C., and Barton, J.K. 1989. Shape‐selective targeting of DNA by (phenanthrenequinone)rhodium(III) photocleaving agents. J. Am. Chem. Soc 111: 4520 ‐ 4522.
dc.identifier.citedreferencePyle, A.M., Chiang, M.Y., and Barton, J.K. 1990. Synthesis and characterization of physical, electronic, and photochemical aspects of 9,10‐phenanthrenequinone diimine complexes of ruthenium(II) and rhodium(III). Inorg. Chem. 29: 4487 ‐ 4495.
dc.identifier.citedreferenceSitlani, A., Barton, J.K. 1994. Sequence‐specific recognition of DNA by phenathrenequinone diimine complexes of rhodium(III): Importance of steric and van der Waals interactions. Biochemistry. 33: 12100 ‐ 12108.
dc.identifier.citedreferenceSitlani, A., Long, E.C., Pyle, A.M., and Barton, J.K. 1992. DNA photocleavage by phenanthrenequinone diimine complexes of rhodium(III): Shape selective recognition and reaction. J. Am. Chem. Soc 114: 2303 ‐ 2312.
dc.identifier.citedreferenceUchida, K., Pyle, A.M., Morii, T., and Barton, J.K. 1989. High resolution footprinting of Eco RI and distamycin with [Rh(phi) 2 (bpy)] 3+, a new photofootprinting reagent. Nucl. Acids Res. 17: 10259 ‐ 10279.
dc.identifier.citedreferenceWilson, W.D., Tanious, F.A., Fernandez‐Saiz, M., and Rigl, C.T. 1997. Evaluation of drug‐nucleic acid interactions by thermal melting curves. In Methods in Molecular Biology, Vol. 90: Drug‐DNA Interaction Protocols ( K.R. Fox, ed.)pp. 219 ‐ 240. Humana Press, Totowa, N.J.
dc.identifier.citedreferenceYoshikawa, Y. and Yamasaki, K. 1979. Chromatographic resolution of metal complexes on Sephadex ion exchangers. Coord. Chem. Rev. 28: 205 ‐ 229.
dc.identifier.citedreferenceCampisi et al., 1994.See above.
dc.identifier.citedreferenceChow et al., 1992.See above.
dc.identifier.citedreferenceHartmann and Lavery, 1996.See above.
dc.identifier.citedreferenceJackson and Barton, 1997.See above.
dc.identifier.citedreferenceKirshenbaum et al., 1988.See above.
dc.identifier.citedreferenceLim and Barton, 1997.See above.
dc.identifier.citedreferenceUchida et al., 1989.See above.
dc.identifier.citedreferenceCampisi, D., Morii, T., and Barton, J.K. 1994. Correlations of crystal structures of DNA oligonucleotides with enantioselective recognition by [Rh(phen) 2 (phi)] 3+: Probes of DNA propeller twisting in solution. Biochemistry. 33: 4130 ‐ 4139.
dc.identifier.citedreferenceCartwright, P.S., Gillard, R.D., and Sillanpåå, E.R.J. 1987. Optically active coordination compounds—XLVI. Resolution of tris‐diimmine compounds of chromium(III) using fac‐(+)tris[L‐cysteinesulphinato(2‐)SN]cobaltate (III). Polyhedron. 6: 105 ‐ 110.
dc.identifier.citedreferenceChow, C.S. and Barton, J.K. 1992. Recognition of G‐U mismatches by tris(4,7‐diphenyl‐1,10‐phenanthroline)rhodium(III). Biochemistry. 31: 5423 ‐ 5429.
dc.identifier.citedreferenceChow, C.S., Behlen, L.S., Uhlenbeck, O.C., and Barton, J.K. 1992. Recognition of tertiary structure in tRNAs by [Rh(phen) 2 (phi)] 3+, a new reagent for RNA structure‐function mapping. Biochemistry. 31: 972 ‐ 982.
dc.identifier.citedreferenceDollimore, L.S. and Gillard, R.D. 1973. Optically active co‐ordination compounds. Part XXXII. Potassium (+) tris‐[L‐cysteinesulphinato(2‐)‐SN]cobaltate(III): A versatile agent for resolution of 3+ species. J. Chem. Soc. Dalton Trans. (1973): 934 ‐ 940.
dc.identifier.citedreferenceGidney, P.M., Gillard, R.D., and Heaton, B.T. 1972. 1,10‐Phenanthroline and 2,2′‐bipyridyl complexes of rhodium(III). J. Chem. Soc. Dalton Trans. (1972): 2621 ‐ 2628.
dc.identifier.citedreferenceGillard, R.D., Osborn, J.A., and Wilkinson, G. 1965. Catalytic approaches to complex compounds of rhodium(III). J. Chem. Soc Dalton Trans. (1965): 1951 ‐ 1965.
dc.identifier.citedreferenceGreabe, V.C. and Hönisberger, F. 1900. Ueber die Oxydationsproducte des Chrysens. Ann. Chem. 311: 257 ‐ 265.
dc.identifier.citedreferenceHall, D.B., Holmlin, R.E., and Barton, J.K. 1996. Oxidative DNA damage through long range electron transfer. Nature. 382: 731 ‐ 735.
dc.identifier.citedreferenceHartmann, B. and Lavery, R. 1996. DNA structural forms. Q. Rev. Biophys. 29: 309 ‐ 368.
dc.identifier.citedreferenceHowells, R.D. and McCown, J.D. 1977. Trifluormethanesulfonic acid and derivatives. Chem. Rev. 77: 69 ‐ 92.
dc.identifier.citedreferenceHuber, P.W., Morii, T., Mei, H.‐Y., and Barton, J.K. 1991. Structural polymorphism in the major groove of a 5S RNA gene complements the zinc finger domains of transcription factor IIIA. Proc. Natl. Acad. Sci. U.S.A. 88: 10801 ‐ 10805.
dc.identifier.citedreferenceJackson, B.A. and Barton, J.K. 1997. Recognition of mismatches by a rhodium intercalator. J. Am. Chem. Soc. 199: 12986 ‐ 12987.
dc.identifier.citedreferenceJackson, B.A., Alekseyev, V.A., and Barton, J.K. 1999. A versatile recognition agent: Specific cleavage of a plasmid DNA at a single base mispair. Biochemistry 38: 4655 ‐ 4662.
dc.identifier.citedreferenceKirshenbaum, M.R., Tribolet, R., and Barton, J.K. 1988. [Rh(DIP) 3 ] 3+: A shape‐selective metal complex which targets cruciforms. Nucl. Acids Res. 16: 7943 ‐ 7960.
dc.identifier.citedreferenceLee, I. and Barton, J.K. 1993. A distinct intron‐DNA structure in simian virus 40 T‐antigen and adenovirus 2 E1A genes. Biochemistry. 32: 6121 ‐ 6127.
dc.identifier.citedreferenceLim, A.‐C. and Barton, J.K. 1993. Chemical probing of tDNA Phe with transition metal complexes: A structural comparison of RNA and DNA. Biochemistry. 32: 11029 ‐ 11034.
dc.identifier.citedreferenceLim, A.‐C. and Barton, J.K. 1997. Targeting the Tat‐binding site of bovine immunodeficiency virus TAR RNA with a shape‐selective rhodium complex. Bioorg. Med. Chem. 5: 1131 ‐ 1136.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.