Show simple item record

Calorimetry of Nucleic Acids

dc.contributor.authorPilch, Daniel S.
dc.date.accessioned2018-05-15T20:13:48Z
dc.date.available2018-05-15T20:13:48Z
dc.date.issued2000-02
dc.identifier.citationPilch, Daniel S. (2000). "Calorimetry of Nucleic Acids." Current Protocols in Nucleic Acid Chemistry 00(1): 7.4.1-7.4.9.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/143664
dc.description.abstractThis unit describes the application of differential scanning and isothermal titration calorimetry (DSC and ITC) to the study of the thermodynamics of nucleic acid structure. DSC is used to study order‐disorder transitions. A single DSC profile provides a wealth of thermodynamic and extrathermodynamic information: transition enthalpy, entropy, free energy, heat capacity, the state of the transition (two‐state vs. multistate), and the size of the cooperative unit. ITC is used to study hybridization of nucleic acids at constant temperature. Results can be used to determine the stoichiometry of the association reaction, the enthalpy of association, the equilibrium association constant, and the free energy and entropy of association. A thorough discussion is presented of the details required to obtain meaningful results, as well as relevant methods for analyzing the data produced.
dc.publisherJohn Wiley & Sons
dc.titleCalorimetry of Nucleic Acids
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143664/1/cpnc0704.pdf
dc.identifier.doi10.1002/0471142700.nc0704s00
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceBreslauer, K.J. 1995. Extracting thermodynamic data from equilibrium melting curves for oligonucleotide order‐disorder transitions. Methods Enzymol. 259: 221 ‐ 242.
dc.identifier.citedreferenceBreslauer, K.J., Freire, E., and Straume, M. 1992. Calorimetry: A tool for DNA and ligand‐DNA studies. Methods Enzymol. 211: 533 ‐ 567.
dc.identifier.citedreferenceEdsall, J.T. and Gutfreund, H. 1983. Calorimetry, heat capacity, and phase transitions. In Biothermodynamics: The Study of Biochemical Processes at Equilibrium,pp. 210 ‐ 227. John Wiley & Sons, New York.
dc.identifier.citedreferenceFreire, E., Mayorga, O.L., and Straume, M. 1990. Isothermal titration calorimetry. Anal. Chem. 62: 950A ‐ 959A.
dc.identifier.citedreferenceGralla, J. and Crothers, D.M. 1973. Free energy of imperfect nucleic acid helices III. Small internal loops resulting from mismatches. J. Mol. Biol. 78: 301 ‐ 319.
dc.identifier.citedreferenceKamiya, M., Torigoe, H., Shindo, H., and Sarai, A. 1996. Temperature dependence and sequence specificity of DNA triplex formation: An analysis using isothermal titration calorimetry. J. Am. Chem. Soc. 118: 4532 ‐ 4538.
dc.identifier.citedreferenceKrug, R.R., Hunter, W.G., and Grieger, R.A. 1976. Enthalpy‐entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t Hoff and Arrhenius data. J. Phys. Chem. 80: 2335 ‐ 2341.
dc.identifier.citedreferenceMarky, L.A. and Breslauer, K.J. 1987. Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves. Biopolymers 26: 1601 ‐ 1620.
dc.identifier.citedreferenceNaghibi, H., Tamura, A., and Sturtevant, J.M. 1995. Significant discrepencies between van’t Hoff and calorimetric enthalpies. Proc. Natl. Acad. Sci. U.S.A. 92: 5597 ‐ 5599.
dc.identifier.citedreferencePlum, G.E. and Breslauer, K.J. 1995. Calorimetry of proteins and nucleic acids. Curr. Opin. Struct. Biol. 5: 682 ‐ 690.
dc.identifier.citedreferencePlum, G.E., Pilch, D.S., Singleton, S.F., and Breslauer, K.J. 1995. Nucleic acid hybridization: Triplex stability and energetics. Annu. Rev. Biophys. Biomol. Struct. 24: 319 ‐ 350.
dc.identifier.citedreferenceSturtevant, J.M. 1987. Biochemical applications of differential scanning calorimetry. Annu. Rev. Phys. Chem. 38: 463 ‐ 488.
dc.identifier.citedreferenceVesnaver, G. and Breslauer, K.J. 1991. The contribution of DNA single‐stranded order to the thermodynamics of duplex formation. Proc. Natl. Acad. Sci. U.S.A. 88: 3569 ‐ 3573.
dc.identifier.citedreferenceWilson, W.D., Hopkins, H.P., Mizan, S., Hamilton, D.D., and Zon, G. 1994. Thermodynamics of DNA triplex formation in oligomers with and without cytosine bases: Influence of buffer species, pH, and sequence. J. Am. Chem. Soc. 116: 3607 ‐ 3608.
dc.identifier.citedreferenceWiseman, T., Williston, S., Brandts, J.F., and Lin, L.‐N. 1989. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 179: 131 ‐ 137.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.