Show simple item record

Task experience influences coordinative structures and performance variables in learning a slalom skiâ simulator task

dc.contributor.authorDutt‐mazumder, A.
dc.contributor.authorNewell, K. M.
dc.date.accessioned2018-05-15T20:13:55Z
dc.date.available2019-07-01T14:52:16Zen
dc.date.issued2018-05
dc.identifier.citationDutt‐mazumder, A. ; Newell, K. M. (2018). "Task experience influences coordinative structures and performance variables in learning a slalom skiâ simulator task." Scandinavian Journal of Medicine & Science in Sports 28(5): 1604-1614.
dc.identifier.issn0905-7188
dc.identifier.issn1600-0838
dc.identifier.urihttps://hdl.handle.net/2027.42/143670
dc.publisherPergamon Press Ltd
dc.publisherWiley Periodicals, Inc.
dc.subject.otherslalom skiâ simulator
dc.subject.othersynergies
dc.subject.otherskill acquisition
dc.subject.othermultiâ joint coordination
dc.titleTask experience influences coordinative structures and performance variables in learning a slalom skiâ simulator task
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelKinesiology
dc.subject.hlbtoplevelSocial Sciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143670/1/sms13063_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143670/2/sms13063.pdf
dc.identifier.doi10.1111/sms.13063
dc.identifier.sourceScandinavian Journal of Medicine & Science in Sports
dc.identifier.citedreferenceden Brinker BPLM, van Hekken MF. The analysis of slalomâ ski type movements using a skiâ simulator apparatus. Hum Mov Sci 1982; 2: 91 â 108.
dc.identifier.citedreferenceSavelsbergh GJ, Maas HLJ, Geert P. Nonâ Linear Developmental Processes. Amsterdam, the Netherlands: Royal Netherlands Academy of Arts and Sciences; 1999.
dc.identifier.citedreferenceDempster. Space Requirements of the Seated Operator. (WADC Technical report,55â 159). Ohio: Aerospace Medical Research Laboratory; 1955.
dc.identifier.citedreferenceCreath R, Kiemel T, Horak F, Peterka R, Jeka J. A unified view of quiet and perturbed stance: simultaneous coâ existing excitable modes. Neurosci Lett. 2005; 377: 75 â 80.
dc.identifier.citedreferenceBloomfield P. Fourier Analysis of Time Series: an Introduction. New York, NY: John Wiley & Sons; 2004.
dc.identifier.citedreferenceMardia KV. Statistics of directional data. J R Stat Soc Ser B. 1975; 37: 349 â 393.
dc.identifier.citedreferenceMitra P, Bokil H. Observed Brain Dynamics. New York, NY: Oxford University Press; 2008.
dc.identifier.citedreferenceThompson D. Spectrum estimation and harmonic analysis. Proc IEEE. 1982; 70: 1055 â 1096.
dc.identifier.citedreferenceNewell KM, Vaillancourt DE. Dimensional change in motor learning. Hum Mov Sci. 2001; 20: 695 â 715.
dc.identifier.citedreferenceHaken H, Kelso JAS, Bunz H. A theoretical model of phase transitions in human hand movements. Biol Cybern. 1985; 51: 347 â 356.
dc.identifier.citedreferenceWulf G, Höà M, Prinz W. Instructions for motor learning: differential effects of internal versus external focus of attention. J Mot Behav. 1998; 30: 169 â 179.
dc.identifier.citedreferenceNewell A, Rosenbloom PS. Mechanisms of skill acquisition and the law of practice. Cogn Ski their Acquis. 1981; 1: 1 â 55.
dc.identifier.citedreferenceSchmidt RA, Lee TD. Motor Learning and Performance, 5E with Web Study Guide: From Principles to Application. Champaign, IL: Human Kinetics; 2013.
dc.identifier.citedreferenceGentile AM. A Working Model of Skill Acquisition with Application to Teaching. Quest. 1972; 17: 3 â 23.
dc.identifier.citedreferenceNourrit D, Delignières D, Caillou N, Deschamps T, Lauriot B. On discontinuities in motor learning: a longitudinal study of complex skill acquisition on a skiâ simulator. J Mot Behav. 2003; 35: 151 â 170.
dc.identifier.citedreferenceOrth D, Davids K, Seifert L. Constraints representing a metaâ stable régime facilitate exploration during practice and transfer of learning in a complex multiâ articular task. Hum Mov Sci 2017; 57: 291 â 302.
dc.identifier.citedreferenceWulf G, Weigelt C. Instructions about physical principles in learning a complex motor skill: to tell or not to tellâ ¦. Res Quaterly Exerc Sport. 1997; 68: 362 â 367.
dc.identifier.citedreferenceDuttâ Mazumder A, Newell KM. Transitions of postural coordination as a function of frequency of the moving support platform. Hum Mov Sci. 2017; 52: 24 â 35.
dc.identifier.citedreferenceHorak FB, Shupert CL, Dietz V, Horstmann G. Vestibular and somatosensory contributions to responses to head and body displacements in stance. Exp Brain Res. 1994; 100: 93 â 106.
dc.identifier.citedreferenceBardy BG, Oullier O, Bootsma RJ, Stoffregen TA. Dynamics of human postural transitions. J Exp Psychol Hum Percept Perform. 2002; 28: 499 â 514.
dc.identifier.citedreferenceDavids K, Button C, Bennett S. Dynamics of Skill Acquisition: A Constraintsâ Led Approach. Champaign, IL: Human Kinetics; 2008.
dc.identifier.citedreferenceBernstein NA. The Coordination and Regulation of Movements. Oxford, UK: Pergamon Press Ltd; 1967.
dc.identifier.citedreferenceArutyunyan GA, Gurfinkel VS, Mirskii ML. Study of taking aim at a target. Biophysics (Oxf). 1968; 13: 642 â 645.
dc.identifier.citedreferenceVereijken B, van Emmerik REA, Whiting HTA, Newell KM. Free (z) ing Degrees of freedom in skill acquisition. J Mot Behav 1992; 24: 133 â 142.
dc.identifier.citedreferenceWinter DA. Biomechanics and Motor Control of Human Movement. John Wiley & Sons, NJ: John Wiley & Sons, Ltd.; 2009.
dc.identifier.citedreferenceDuttâ Mazumder A, Challis JH, Newell KM. Maintenance of postural stability as a function of tilted base of support. Hum Mov Sci. 2016; 48: 91 â 101.
dc.identifier.citedreferenceLiu Yâ T, Newell KM. Sâ Shaped motor learning and nonequilibrium phase transitions. J Exp Psychol Hum Percept Perform. 2015; 41: 403 â 414.
dc.identifier.citedreferenceFitts PM. Perceptualâ motor skill learning. In: Melton AW, ed. Categories of Human Learning. London, UK: Academic Press; 1964: 243 â 285.
dc.identifier.citedreferenceMitra S, Amazeen PG, Turvey MT. Intermediate motor learning as decreasing active (dynamical) degrees of freedom. Hum Mov Sci. 1998; 17: 17 â 65.
dc.identifier.citedreferenceDuttâ Mazumder A, Slobounov SM, Challis JH, Newell KM. Postural stability margins as a function of support surface slopes. PLoS ONE. 2016; 11: e0164913.
dc.identifier.citedreferenceKo Jâ H, Challis JH, Newell KM. Transition of COMâ COP relative phase in a dynamic balance task. Hum Mov Sci. 2014; 38: 1 â 14.
dc.identifier.citedreferenceKelso JAS. Dynamic Patterns: The Selfâ Organization of Brain and Behavior. Cambridge, UK: MIT Press; 1995.
dc.identifier.citedreferenceHong SL, Newell KM. Practice effects on local and global dynamics of the skiâ simulator task. Exp Brain Res. 2006; 169: 350 â 360.
dc.identifier.citedreferenceHong SL, Newell KM. Change in the organization of degrees with learning. J Mot Behav. 2006; 38: 88 â 100.
dc.identifier.citedreferenceJeka J, Kelso JAS. The dynamic pattern approach to coordinated behavior: a tutorial review. In: Wallace SA, ed. Perspectives on the Coordination of Movement. Advances in Psychology. Northâ Holland: Elsevier Science Publishers 1989: 3 â 46.
dc.identifier.citedreferenceVereijken B, van Emmerik REA, Bongaardt R, Beek WJ, Newell KM. Changing coordinative structures in complex skill acquisition. Hum Mov Sci. 1997; 16: 823 â 844.
dc.identifier.citedreferenceWhiting HTA, Bijlard MJ, den Brinker BPLM. The effect of the availability of a dynamic model on the acquisition of a complex cyclical action. Q J Exp Psychol Sect A. 1987; 39: 43 â 59.
dc.identifier.citedreferenceKostrubiec V, Tallet J, Zanone Pâ G. How a new behavioral pattern is stabilized with learning determines its persistence and flexibility in memory. Exp Brain Res. 2006; 170: 238 â 244.
dc.identifier.citedreferenceKostrubiec V, Zanone Pâ G, Fuchs A, Kelso JAS. Beyond the blank slate: routes to learning new coordination patterns depend on the intrinsic dynamics of the learnerâ experimental evidence and theoretical model. Front Hum Neurosci. 2012; 6: 222.
dc.identifier.citedreferenceChow JY, Davids K, Button C, Rein R. Dynamics of Movement Patterning in Learning a Discrete Multiarticular Action. Mot Control. 2008; 12: 219 â 240.
dc.identifier.citedreferenceChow JY, Davids K, Button C, Koh M. Variation in coordination of a discrete multiarticular action as a function of skill level. J Mot Behav. 2007; 39: 463 â 479.
dc.identifier.citedreferenceChow J, Davids K, Button C, Koh M. Coordination changes in a discrete multiâ articular action as a function of practice. Acta Psychol (Amst). 2008; 127: 163 â 176.
dc.identifier.citedreferenceKugler PN, Kelso JAS, Turvey MT. On the concept of coordinative structures as dissipative structures: I. Theoretical lines of convergence. Tutorials Mot Behav. 1980; 3: 3 â 47.
dc.identifier.citedreferenceNewell KM. Constraints on the development of coordination. In: Whiting HTA, Wade MG, eds. Motor Development in Children: aspects of Coordination and Control. Dordrecht, the Netherlands: Martinus Nijhoff Publishers; 1985: 341 â 360.
dc.identifier.citedreferenceNewell KM, Liu YT, Mayerâ Kress G. Time scales in motor learning and development. Psychol Rev 2001; 108: 57 â 82.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.