Show simple item record

On the Interpretation and Correlation of High‐Temperature Ignition Delays in Reactors with Varying Thermodynamic Conditions

dc.contributor.authorTao, Mingyuan
dc.contributor.authorLaich, Andrew
dc.contributor.authorLynch, Patrick
dc.contributor.authorZhao, Peng
dc.date.accessioned2018-05-15T20:14:08Z
dc.date.available2019-08-01T19:53:23Zen
dc.date.issued2018-06
dc.identifier.citationTao, Mingyuan; Laich, Andrew; Lynch, Patrick; Zhao, Peng (2018). "On the Interpretation and Correlation of High‐Temperature Ignition Delays in Reactors with Varying Thermodynamic Conditions." International Journal of Chemical Kinetics 50(6): 410-424.
dc.identifier.issn0538-8066
dc.identifier.issn1097-4601
dc.identifier.urihttps://hdl.handle.net/2027.42/143682
dc.description.abstractIgnition delay time (IDT) is a useful global metric for fuel performance screening and a major target for kinetic modeling. Measurements of IDT are conceptually straightforward; however, interpretation could be complicated, especially for systems with changing temperature and pressure. Some experimental conditions in the high repetition rate miniature shock tube (HRRST) exhibit complex temperature and pressure state histories. To better interpret and correlate IDTs, especially those obtained in reactors with varying thermodynamic conditions, an inverse Livengood–Wu (L‐W) integral technique is applied to deconvolve the constant condition IDTs from measured IDTs in the HRRST using information on the varying state history. In this paper, the approximate problem is demonstrated using only the measured pressure history leading up to ignition, where the temperature history is estimated based on an isentropic assumption. The IDTs of several fuels were first measured in the HRRST including isooctane and acetone to represent those fuels without strong low‐temperature chemistry effects. Based on the measured pressure and approximated temperature history, measurements of IDTs in the HRRST compare very favorably with those measured using more conventional techniques, including conventionally sized shock tubes, via the inverse L‐W correlation with relaxed Newton iteration and genetic algorithm. This study demonstrates the feasibility of using a high throughput ignition testing facility, like the HRRST to extract the constant state IDT measured in regular shock tubes, assisted by the inverse L‐W correlation. It is expected with an independent temperature measurement available in the future, IDTs in a broader range of thermodynamic conditions and effects of heat loss could be better resolved.
dc.publisherMarcel Dekker
dc.publisherWiley Periodicals, Inc.
dc.titleOn the Interpretation and Correlation of High‐Temperature Ignition Delays in Reactors with Varying Thermodynamic Conditions
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143682/1/kin21170.pdf
dc.identifier.doi10.1002/kin.21170
dc.identifier.sourceInternational Journal of Chemical Kinetics
dc.identifier.citedreferenceMitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, 1999; pp. 62 – 75.
dc.identifier.citedreferenceLaich, A.; Lynch, P. T. In 10th US National Meeting on Combustion; College Park, MD, 2017; p. 3A1.
dc.identifier.citedreferenceBurcat, A.; Ruscic, B. Gas Thermochemical Database with updates from Active Thermochemical Tables; 2015; [Internet]. http://garfield.chem.elte.hu/Burcat/burcat.html. [cited 2015 Jul 13].
dc.identifier.citedreferenceGardiner, W. C.; Walker, B. F.; Wakefield, C. B. In Shock Waves in Chemistry; Lifshitz, A., Ed.; Marcel Dekker: New York, 1981; p. 319.
dc.identifier.citedreferenceTang, W.; Brezinsky, K. Int J Chem Kinet 2006, 38, 75 – 97.
dc.identifier.citedreferenceJeffries, J. B.; Schulz, C.; Mattison, D. W.; Oehlschlaeger, M. A.; Bessler, W. G.; Lee, T.; Davidson, D. F.; Hanson, R. K. Proc Combust Inst 2005, 30, 1591 – 1599.
dc.identifier.citedreferenceChaos, M.; Dryer, F. L. Int J Chem Kinet 2010, 42, 143 – 150.
dc.identifier.citedreferenceDavidson, D. F.; Ranganath, S. C.; Lam, K.‐Y., Liaw, M.; Hong, Z.; H, R. K. J Propuls Power 2010, 26, 280 – 287.
dc.identifier.citedreferencePichon, S.; Black, G.; Chaumeix, N.; Yahyaoui, M.; Simmie, J.; Curran, H.; Donohue, R. Combust Flame 2009, 156, 494 – 504.
dc.identifier.citedreferenceDavidson, D. F.; Hanson, R. K. Int J Chem Kinet 2004, 36, 510 – 523.
dc.identifier.citedreferenceTranter, R. S.; Sivaramakrishnan, R.; Srinivasan, N.; Brezinsky, K. Int J Chem Kinet 2001, 33, 722 – 731.
dc.identifier.citedreferenceHeyne, J. S.; Dryer, F. L. J Phys Chem A 2013, 117, 5401 – 5406.
dc.identifier.citedreferenceOehlschlaeger, M. A.; Davidson, D. F.; Herbon, J. T.; Hanson, R. K. Int J Chem Kinet 2003, 36, 67 – 78.
dc.identifier.citedreferenceShen, H. P. S., Vanderover, J.; Oehlschlaeger, M. A. Combust Flame 2008, 155, 739 – 755.
dc.identifier.citedreferenceHanson, R. K.; Davidson, D. F. Prog Energy Combust Sci 2014, 44, 103 – 114.
dc.identifier.citedreferenceSung, C.‐J., Curran, H. J. Prog Energy Combust Sci 2014, 44, 1 – 18.
dc.identifier.citedreferenceBeerer, D.; McDonell, V.; Samuelsen, S.; Angello, L. J Eng Gas Turbines Power 2011, 133, 11502.
dc.identifier.citedreferenceDec, J. E. Proc Combust Inst 2009, 32, 2727 – 2742.
dc.identifier.citedreferenceTanaka, S.; Ayala, F.; Keck, J. C.; Heywood, J. B. Combust Flame 2003, 132, 219 – 239.
dc.identifier.citedreferenceLynch, P. T.; Wang, G. Proc Combust Inst 2017, 36, 307 – 314.
dc.identifier.citedreferenceLivengood, J. C.; Wu, P. C. Symp Combust 1955, 5, 347 – 356.
dc.identifier.citedreferencePan, J.; Zhao, P.; Law, C. K.; Wei, H. Int J Engine Res 2016, 17, 825 – 835.
dc.identifier.citedreferenceTao, M.; Han, D.; Zhao, P. Combust Flame 2017, 176, 400 – 408.
dc.identifier.citedreferenceYates, A.; Bell, A.; Swarts, A. Fuel 2010, 89, 83 – 93.
dc.identifier.citedreferenceKhaled, F.; Badra, J.; Farooq, A. In 10th US National Meeting on Combustion; College Park, MD, 2017; p. 3A10.
dc.identifier.citedreferenceSzybist, J. P.; Wagnon, S. W.; Splitter, D.; Pitz, W. J.; Mehl, M. SAE Int J Engines 2017, 10, 24 – 61.
dc.identifier.citedreferenceTao, M.; Zhao, P.; DelVescovo, D.; Ge, H. Combust Flame 2018, 192, 238 – 249.
dc.identifier.citedreferenceMiyoshi, A. Phys Chem Chem Phys 2018.
dc.identifier.citedreferenceReyes, M.; Tinaut, F. V., Andrés, C.; Pérez, A. Fuel 2012, 102, 289 – 298.
dc.identifier.citedreferenceLynch, P. T. Rev Sci Instrum 2016, 87, 56110.
dc.identifier.citedreferenceTranter, R. S.; Lynch, P. T. Rev Sci Instrum 2013, 84, 94102.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.