Show simple item record

Update on the Worsening Particle Radiation Environment Observed by CRaTER and Implications for Future Human Deep‐Space Exploration

dc.contributor.authorSchwadron, N. A.
dc.contributor.authorRahmanifard, F.
dc.contributor.authorWilson, J.
dc.contributor.authorJordan, A. P.
dc.contributor.authorSpence, H. E.
dc.contributor.authorJoyce, C. J.
dc.contributor.authorBlake, J. B.
dc.contributor.authorCase, A. W.
dc.contributor.authorWet, W.
dc.contributor.authorFarrell, W. M.
dc.contributor.authorKasper, J. C.
dc.contributor.authorLooper, M. D.
dc.contributor.authorLugaz, N.
dc.contributor.authorMays, L.
dc.contributor.authorMazur, J. E.
dc.contributor.authorNiehof, J.
dc.contributor.authorPetro, N.
dc.contributor.authorSmith, C. W.
dc.contributor.authorTownsend, L. W.
dc.contributor.authorWinslow, R.
dc.contributor.authorZeitlin, C.
dc.date.accessioned2018-05-15T20:14:10Z
dc.date.available2019-05-13T14:45:27Zen
dc.date.issued2018-03
dc.identifier.citationSchwadron, N. A.; Rahmanifard, F.; Wilson, J.; Jordan, A. P.; Spence, H. E.; Joyce, C. J.; Blake, J. B.; Case, A. W.; Wet, W.; Farrell, W. M.; Kasper, J. C.; Looper, M. D.; Lugaz, N.; Mays, L.; Mazur, J. E.; Niehof, J.; Petro, N.; Smith, C. W.; Townsend, L. W.; Winslow, R.; Zeitlin, C. (2018). "Update on the Worsening Particle Radiation Environment Observed by CRaTER and Implications for Future Human Deep‐Space Exploration." Space Weather 16(3): 289-303.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/143683
dc.description.abstractOver the last decade, the solar wind has exhibited low densities and magnetic field strengths, representing anomalous states that have never been observed during the space age. As discussed by Schwadron, Blake, et al. (2014, https://doi.org/10.1002/2014SW001084), the cycle 23–24 solar activity led to the longest solar minimum in more than 80 years and continued into the “mini” solar maximum of cycle 24. During this weak activity, we observed galactic cosmic ray fluxes that exceeded theERobserved small solar energetic particle events. Here we provide an update to the Schwadron, Blake, et al. (2014, https://doi.org/10.1002/2014SW001084) observations from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter. The Schwadron, Blake, et al. (2014, https://doi.org/10.1002/2014SW001084) study examined the evolution of the interplanetary magnetic field and utilized a previously published study by Goelzer et al. (2013, https://doi.org/10.1002/2013JA019404) projecting out the interplanetary magnetic field strength based on the evolution of sunspots as a proxy for the rate that the Sun releases coronal mass ejections. This led to a projection of dose rates from galactic cosmic rays on the lunar surface, which suggested a ∼20% increase of dose rates from one solar minimum to the next and indicated that the radiation environment in space may be a worsening factor important for consideration in future planning of human space exploration. We compare the predictions of Schwadron, Blake, et al. (2014, https://doi.org/10.1002/2014SW001084) with the actual dose rates observed by CRaTER in the last 4 years. The observed dose rates exceed the predictions by ∼10%, showing that the radiation environment is worsening more rapidly than previously estimated. Much of this increase is attributable to relatively low‐energy ions, which can be effectively shielded. Despite the continued paucity of solar activity, one of the hardest solar events in almost a decade occurred in September 2017 after more than a year of all‐clear periods. These particle radiation conditions present important issues that must be carefully studied and accounted for in the planning and design of future missions (to the Moon, Mars, asteroids, and beyond).Plain Language SummaryWe examine the evolution of fluxes from galactic cosmic rays and recent solar energetic particle events to evaluate the recent evolution of radiation hazards in space and their implications for human and robotic exploration.Key PointsGCR radiation doses are rising faster than predicted previouslySEP radiation events are large despite low solar activityRadiation environment is a significant factor for mission planning
dc.publisherWiley Periodicals, Inc.
dc.publisherNational Academy Press The National Academies Press
dc.subject.otherCoronal mass ejections (4305, 7513)
dc.subject.otherEnergetic particles (7514)
dc.subject.otherSolar cycle variations (7536)
dc.subject.otherSpace weather (2101, 2788, 7900)
dc.subject.otherCosmic rays
dc.titleUpdate on the Worsening Particle Radiation Environment Observed by CRaTER and Implications for Future Human Deep‐Space Exploration
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143683/1/swe20567_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143683/2/swe20567.pdf
dc.identifier.doi10.1002/2017SW001803
dc.identifier.sourceSpace Weather
dc.identifier.citedreferenceSchwadron, N. A., Fisk, L. A., & Gloeckler, G. ( 1996 ). Statistical acceleration of interstellar pick‐up ions in co‐rotating interaction regions. Geophysical Research Letters, 23, 2871 – 2874. https://doi.org/10.1029/96GL02833
dc.identifier.citedreferenceConnick, D. E., Smith, C. W., & Schwadron, N. A. ( 2009 ). The flux of open and toroidal interplanetary magnetic field as a function of heliolatitude and solar cycle. The Astrophysical Journal, 695, 357 – 362. https://doi.org/10.1088/0004-637X/695/1/357
dc.identifier.citedreferenceCucinotta, F. A., & Durante, M. ( 2006 ). Cancer risk from exposure to galactic cosmic rays: Implications for space exploration by human beings. Lancet Oncology, 7, 431 – 435.
dc.identifier.citedreferenceCucinotta, F. A., Hu, S., Schwadron, N. A., Kozarev, K., Townsend, L. W., & Kim, M.‐H. Y. ( 2010 ). Space radiation risk limits and Earth‐Moon‐Mars environmental models. Space Weather, 8, S00E09. https://doi.org/10.1029/2010SW000572
dc.identifier.citedreferenceDesai, M. I., Mason, G. M., Dwyer, J. R., Mazur, J. E., Gold, R. E., Krimigis, S. M., et al. ( 2003 ). Evidence for a suprathermal seed population of heavy ions accelerated by interplanetary shocks near 1 AU. The Astrophysical Journal, 588, 1149 – 1162. https://doi.org/10.1086/374310
dc.identifier.citedreferenceDesai, M. I., Mason, G. M., Mazur, J. E., & Dwyer, J. R. ( 2006 ). Solar cycle variations in the composition of the suprathermal heavy‐ion population near 1 AU. The Astrophysical Journal Letters, 645, L81 – L84. https://doi.org/10.1086/505935
dc.identifier.citedreferenceGoelzer, M. L., Smith, C. W., Schwadron, N. A., & McCracken, K. G. ( 2013 ). An analysis of heliospheric magnetic field flux based on sunspot number from 1749 to today and prediction for the coming solar minimum. Journal of Geophysical Research: Space Physics, 118, 7525 – 7531. https://doi.org/10.1002/2013JA019404
dc.identifier.citedreferenceGopalswamy, N., Yashiro, S., Krucker, S., Stenborg, G., & Howard, R. A. ( 2004 ). Intensity variation of large solar energetic particle events associated with coronal mass ejections. Journal of Geophysical Research, 109, A12105. https://doi.org/10.1029/2004JA010602
dc.identifier.citedreferenceHathaway, D. H., & Upton, L. A. ( 2016 ). Predicting the amplitude and hemispheric asymmetry of solar cycle 25 with surface flux transport. Journal of Geophysical Research: Space Physics, 121, A1010. https://doi.org/10.1002/2016JA023190
dc.identifier.citedreferenceHu, S., Kim, M.‐H. Y., McClellan, G. E., & Cucinotta, F. A. ( 2009 ). Modeling the acute health effects of astronauts from exposure to large solar particle events. Health Physics, 96, 465 – 476. https://doi.org/10.1097/01.HP. 0000339020.92837.61
dc.identifier.citedreferenceJokipii, J. R., Levy, E. H., & Hubbard, W. B. ( 1977 ). Effects of particle drift on cosmic‐ray transport. I—General properties, application to solar modulation. The Astrophysical Journal, 213, 861 – 868. https://doi.org/10.1086/155218
dc.identifier.citedreferenceLi, G., Moore, R., Mewaldt, R. A., Zhao, L., & Labrador, A. W. ( 2012 ). A twin‐CME scenario for ground level enhancement events. Space Science Reviews, 171, 141 – 160. https://doi.org/10.1007/s11214-011-9823-7
dc.identifier.citedreferenceLugaz, N., Temmer, M., Wang, Y., & Farrugia, C. J. ( 2017 ). The interaction of successive coronal mass ejections: A review. Solar Physics, 292, 64. https://doi.org/10.1007/s11207-017-1091-6
dc.identifier.citedreferenceMazur, J. E., Crain, W. R., Looper, M. D., Mabry, D. J., Blake, J. B., Case, A. W., et al. ( 2011 ). New measurements of total ionizing dose in the lunar environment. Space Weather, 9, S07002. https://doi.org/10.1029/2010SW000641
dc.identifier.citedreferenceMazur, J. E., Zeitlin, C., Schwadron, N., Looper, M. D., Townsend, L. W., Blake, J. B., et al. ( 2015 ). Update on radiation dose from galactic and solar protons at the Moon using the LRO/CRaTER Microdosimeter. Space Weather, 13, 363 – 364. https://doi.org/10.1002/2015SW001175
dc.identifier.citedreferenceMcComas, D. J., Angold, N., Elliott, H. A., Livadiotis, G., Schwadron, N. A., Skoug, R. M., et al. ( 2013 ). Weakest solar wind of the space age and the current “mini” solar maximum. The Astrophysical Journal, 779, 2. https://doi.org/10.1088/0004-637X/779/1/2
dc.identifier.citedreferenceNCRP ( 2000 ). Radiation protection guidance for activities in low‐Earth orbit ( NCRP Report 132 ). Bethesda, MD: National Council on Radiation Protection and Measurements.
dc.identifier.citedreferenceNRC ( 2008 ). Managing space radiation risk in the new era of space exploration. Washington, DC: National Academy Press The National Academies Press.
dc.identifier.citedreferenceOdstrcil, D., Pizzo, V. J., & Arge, C. N. ( 2005 ). Propagation of the 12 May 1997 interplanetary coronal mass ejection in evolving solar wind structures. Journal of Geophysical Research, 110, A02106. https://doi.org/10.1029/2004JA010745
dc.identifier.citedreferenceO’Neill, P. M. ( 2006 ). Badhwar O’Neill galactic cosmic ray model update based on Advanced Composition Explorer (ACE) energy spectra from 1997 to present. Advances in Space Research, 37, 1727 – 1733. https://doi.org/10.1016/j.asr. 2005.02.001
dc.identifier.citedreferenceRahmanifard, F., Schwadron, N. A., Smith, C. W., McCracken, K. G., Duderstadt, K. A., Lugaz, N., et al. ( 2017 ). Inferring the heliospheric magnetic field back through Maunder Minimum. The Astrophysical Journal, 837, 165. https://doi.org/10.3847/1538-4357/aa6191
dc.identifier.citedreferenceSchwadron, N. ( 2012 ). Near‐real‐time situational awareness of space radiation hazards. Space Weather, 10, S10005. https://doi.org/10.1029/2012SW000860
dc.identifier.citedreferenceSchwadron, N. A., Smith, C. W., Spence, H. E., Kasper, J. C., Korreck, K., Stevens, M. L., et al. ( 2011 ). Coronal electron temperature from the solar wind scaling law throughout the space age. The Astrophysical Journal, 739, 9. https://doi.org/10.1088/0004-637X/739/1/9
dc.identifier.citedreferenceSchwadron, N. A., Baker, T., Blake, B., Case, A. W., Cooper, J. F., Golightly, M., et al. ( 2012 ). Lunar radiation environment and space weathering from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER). Journal of Geophysical Research, 117, E00H13. https://doi.org/10.1029/2011JE003978
dc.identifier.citedreferenceSchwadron, N. A., Blake, J. B., Case, A. W., Joyce, C. J., Kasper, J., Mazur, J., et al. ( 2014 ). Does the worsening galactic cosmic radiation environment observed by CRaTER preclude future manned deep space exploration? Space Weather, 12, 622 – 632. https://doi.org/10.1002/2014SW001084
dc.identifier.citedreferenceSchwadron, N. A., Goelzer, M. L., Smith, C. W., Kasper, J. C., Korreck, K., Leamon, R. J., et al. ( 2014 ). Coronal electron temperature in the protracted solar minimum, the cycle 24 mini maximum, and over centuries. Journal of Geophysical Research: Space Physics, 119, 1486 – 1492. https://doi.org/10.1002/2013JA019397
dc.identifier.citedreferenceSchwadron, N. A., Lee, M. A., Gorby, M., Lugaz, N., Spence, H. E., Desai, M., et al. ( 2015 ). Particle acceleration at low coronal compression regions and shocks. The Astrophysical Journal, 810, 97. https://doi.org/10.1088/0004-637X/810/2/97
dc.identifier.citedreferenceSingleterry, Jr. R. C., Blattnig, S. R., Clowdsley, M. S., Qualls, G. D., Sandridge, C. A., Simonsen, L. C., et al. ( 2011 ). OLTARIS: On‐Line Tool for the Assessment of Radiation in Space. Acta Astronautica, 68, 1086 – 1097. https://doi.org/10.1016/j.actaastro.2010.09.022
dc.identifier.citedreferenceSmith, C. W., McCracken, K. G., Schwadron, N. A., & Goelzer, M. L. ( 2014 ). The heliospheric magnetic flux, solar wind proton flux, and cosmic ray intensity during the coming solar minimum. Space Weather, 12, 499 – 507. https://doi.org/10.1002/2014SW001067
dc.identifier.citedreferenceSmith, E. J. ( 1990 ). The heliospheric current sheet and modulation of Galactic cosmic rays. Journal of Geophysical Research, 95, 18,731 – 18,743. https://doi.org/10.1029/JA095iA11p18731
dc.identifier.citedreferenceSpence, H. E., Case, A. W., Golightly, M. J., Heine, T., Larsen, B. A., Blake, J. B., et al. ( 2010 ). CRaTER: The Cosmic Ray Telescope for the Effects of Radiation experiment on the Lunar Reconnaissance Orbiter mission. Space Science Reviews, 150, 243 – 284. https://doi.org/10.1007/s11214-009-9584-8
dc.identifier.citedreferenceStone, E. C., Cohen, C. M. S., Cook, W. R., Cummings, A. C., Gauld, B., Kecman, B., et al. ( 1998 ). The Cosmic‐Ray Isotope Spectrometer for the Advanced Composition Explorer. Space Science Reviews, 86, 285 – 356. https://doi.org/10.1023/A:1005075813033
dc.identifier.citedreferenceSvalgaard, L. ( 2017 ). Observations of polar magnetic fields and cycle 25 prediction. In Solar Cycle 25 Prediction Workshop. Aichi, Japan: The, Nagoya University.
dc.identifier.citedreferenceSvalgaard, L., Cliver, E. W., & Kamide, Y. ( 2005 ). Sunspot cycle 24: Smallest cycle in 100 years? Geophysical Research Letters, 32, L01104. https://doi.org/10.1029/2004GL021664
dc.identifier.citedreferenceUsmanov, A. V., Goldstein, M. L., & Farrell, W. M. ( 2000 ). A view of the inner heliosphere during the May 10–11, 1999 low density anomaly. Geophysical Research Letters, 27, 3765 – 3768. https://doi.org/10.1029/2000GL000082
dc.identifier.citedreferenceWebber, W. R., & Lockwood, J. A. ( 1988 ). Characteristics of the 22‐year modulation of cosmic rays as seen by neutron monitors. Journal of Geophysical Research, 93, 8735 – 8740. https://doi.org/10.1029/JA093iA08p08735
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.