Show simple item record

Branched Chain Amino Acids, Androgen Hormones, and Metabolic Risk Across Early Adolescence: A Prospective Study in Project Viva

dc.contributor.authorPerng, Wei
dc.contributor.authorRifas‐shiman, Sheryl L.
dc.contributor.authorHivert, Marie‐france
dc.contributor.authorChavarro, Jorge E.
dc.contributor.authorOken, Emily
dc.date.accessioned2018-05-15T20:14:13Z
dc.date.available2019-07-01T14:52:17Zen
dc.date.issued2018-05
dc.identifier.citationPerng, Wei; Rifas‐shiman, Sheryl L. ; Hivert, Marie‐france ; Chavarro, Jorge E.; Oken, Emily (2018). "Branched Chain Amino Acids, Androgen Hormones, and Metabolic Risk Across Early Adolescence: A Prospective Study in Project Viva." Obesity 26(5): 916-926.
dc.identifier.issn1930-7381
dc.identifier.issn1930-739X
dc.identifier.urihttps://hdl.handle.net/2027.42/143686
dc.publisherWiley Periodicals, Inc.
dc.publisherInstitue of Medicine
dc.titleBranched Chain Amino Acids, Androgen Hormones, and Metabolic Risk Across Early Adolescence: A Prospective Study in Project Viva
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEndocrinology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143686/1/oby22164.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143686/2/oby22164_am.pdf
dc.identifier.doi10.1002/oby.22164
dc.identifier.sourceObesity
dc.identifier.citedreferenceShankar RR, Eckert GJ, Saha C, Tu W, Pratt JH. The change in blood pressure during pubertal growth. J Clin Endocrinol Metab 2005; 90: 163 â 167.
dc.identifier.citedreferenceLenaers E, De Feyter HM, Hoeks J, et al. Adaptations in mitochondrial function parallel, but fail to rescue, the transition to severe hyperglycemia and hyperinsulinemia: a study in Zucker diabetic fatty rats. Obesity (Silver Spring) 2010; 18: 1100 â 1107.
dc.identifier.citedreferenceCota D, Proulx K, Smith KA, et al. Hypothalamic mTOR signaling regulates food intake. Science 2006; 312: 927 â 930.
dc.identifier.citedreferenceMacotela Y, Emanuelli B, BÃ¥ng AM, et al. Dietary leucineâ an environmental modifier of insulin resistance acting on multiple levels of metabolism. PloS One 2011; 6: e21187. doi: 10.1371/journal.pone.0021187
dc.identifier.citedreferencePratt CW, Cornely K. Essential Biochemistry. Hoboken, NJ: John Wiley & Sons, Inc.; 2004.
dc.identifier.citedreferenceRagozzino G, Mattera E, Madrid E, et al. Effects of propionylâ carnitine in patients with type 2 diabetes and peripheral vascular disease: results of a pilot trial. Drugs R D 2004; 5: 185 â 190.
dc.identifier.citedreferenceCipolla MJ, Nicoloff A, Rebello T, Amato A, Porter JM. Propionylâ Lâ carnitine dilates human subcutaneous arteries through an endotheliumâ dependent mechanism. J Vasc Surg 1999; 29: 1097 â 1103.
dc.identifier.citedreferenceBarker GA, Green S, Askew CD, Green AA, Walker PJ. Effect of propionylâ Lâ carnitine on exercise performance in peripheral arterial disease. Med Sci Sports Exerc 2001; 33: 1415 â 1422.
dc.identifier.citedreferenceWolf WA, Kuhn DM. Effects of Lâ tryptophan on blood pressure in normotensive and hypertensive rats. J Pharmacol Exp Ther 1984; 230: 324 â 329.
dc.identifier.citedreferenceWang Q, Liu D, Song P, Zou MH. Deregulated tryptophanâ kynurenine pathway is linked to inflammation, oxidative stress, and immune activation pathway in cardiovascular diseases. Front Biosci 2015; 20: 1116 â 1143.
dc.identifier.citedreferencePuri P, Wiest MM, Cheung O, et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology 2009; 50: 1827 â 1838.
dc.identifier.citedreferenceZhang J, Zhao Y, Xu C, et al. Association between serum free fatty acid levels and nonalcoholic fatty liver disease: a crossâ sectional study. Sci Rep 2014; 4: 5832. doi: 10.1038/srep05832
dc.identifier.citedreferenceHaney EM, Huffman LH, Bougatsos C, et al. Screening for Lipid Disorders in Children and Adolescents. Evidence Syntheses, no. 47. Rockville, MD: Agency for Healthcare Research and Quality; 2007. Accessed March 1, 2018.
dc.identifier.citedreferenceApter D. The role of leptin in female adolescence. Ann N Y Acad Sci 2003; 997: 64 â 76.
dc.identifier.citedreferenceClayton P, Trueman J. Leptin and puberty. Arch Dis Child 2000; 83: 1 â 4. doi: 10.1136/adc.83.1.1
dc.identifier.citedreferenceShanahan L, Copeland WE, Worthman CM, Erkanli A, Angold A, Costello EJ. Sexâ differentiated changes in Câ reactive protein from ages 9 to 21: the contributions of BMI and physical/sexual maturation. Psychoneuroendocrinology 2013; 38: 2209 â 2217.
dc.identifier.citedreferenceChen X, Wang Y. Tracking of blood pressure from childhood to adulthood: a systematic review and metaâ regression analysis. Circulation 2008; 117: 3171 â 3180.
dc.identifier.citedreferenceBao W, Srinivasan SR, Wattigney WA, Berenson GS. Persistence of multiple cardiovascular risk clustering related to syndrome X from childhood to young adulthood. The Bogalusa Heart Study. Arch Intern Med 1994; 154: 1842 â 1847.
dc.identifier.citedreferenceWebber LS, Srinivasan SR, Wattigney WA, Berenson GS. Tracking of serum lipids and lipoproteins from childhood to adulthood. The Bogalusa Heart Study. Am J Epidemiol 1991; 133: 884 â 899.
dc.identifier.citedreferenceDabelea D, Mayerâ Davis EJ, Saydah S, et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. J Am Med Assoc 2014; 311: 1778 â 1786.
dc.identifier.citedreferenceZeitler P, Hirst K, Pyle L, et al. A clinical trial to maintain glycemic control in youth with type 2 diabetes. New Engl J Med 2012; 366: 2247 â 2256.
dc.identifier.citedreferenceInstitute of Medicine (US) Committee on Prevention of Obesity in Children and Youth. Preventing Childhood Obesity: Health in the Balance. Washington, DC: Institue of Medicine; 2005.
dc.identifier.citedreferenceNewgard CB, An J, Bain JR, et al. A branchedâ chain amino acidâ related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 2009; 9: 311 â 326.
dc.identifier.citedreferenceWang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk of developing diabetes. Nat Med 2011; 17: 448 â 453.
dc.identifier.citedreferenceMihalik SJ, Michaliszyn SF, de las Heras J, et al. Metabolomic profiling of fatty acid and amino acid metabolism in youth with obesity and type 2 diabetes: evidence for enhanced mitochondrial oxidation. Diabetes Care 2012; 35: 605 â 611.
dc.identifier.citedreferenceMichaliszyn SF, Sjaarda LA, Mihalik SJ, et al. Metabolomic profiling of amino acids and betaâ cell function relative to insulin sensitivity in youth. J Clin Endocrinol Metab 2012; 97: E2119 â E2124.
dc.identifier.citedreferencePerng W, Gillman MW, Fleisch AF, et al. Metabolomic profiles and childhood obesity. Obesity (Silver Spring) 2014; 22: 2570 â 2578.
dc.identifier.citedreferenceMcCormack SE, Shaham O, McCarthy MA, et al. Circulating branchedâ chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr Obes 2013; 8: 52 â 61.
dc.identifier.citedreferencePerng W, Hector EC, Song PXK, et al. Metabolomic determinants of metabolic risk in Mexican adolescents. Obesity (Silver Spring) 2017; 25: 1594 â 1602.
dc.identifier.citedreferenceLee A, Jang HB, Ra M, et al. Prediction of future risk of insulin resistance and metabolic syndrome based on Korean boy’s metabolite profiling. Obes Res Clin Pract 2015; 9: 336 â 345.
dc.identifier.citedreferenceTrico D, Prinsen H, Giannini C, et al. Elevated alphaâ hydroxybutyrate and branchedâ chain amino acid levels predict deterioration of glycemic control in adolescents. J Clin Endocrinol Metab 2017; 102: 2473 â 2481.
dc.identifier.citedreferenceOken E, Baccarelli AA, Gold DR, et al. Cohort profile: Project Viva. Int J Epidemiol 2015; 44: 37 â 48.
dc.identifier.citedreferenceGall WE, Beebe K, Lawton KA, et al. Alphaâ hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PloS One 2010; 5: e10883. doi: 10.1371/journal.pone.0010883
dc.identifier.citedreferenceShin SY, Fauman EB, Petersen AK, et al. An atlas of genetic influences on human blood metabolites. Nat Genet 2014; 46: 543 â 550.
dc.identifier.citedreferenceEvans A, Bridgetwater B, Liu Q, et al. High resolution mass spectrometry improves data quantity and quality as compared to unit mass resolution mass spectrometry in highâ throughput profiling metabolomics. Metabolomics 2014; 4: 132. doi: 10.4172/2153-0769.1000132
dc.identifier.citedreferenceViitasalo A, Lakka TA, Laaksonen DE, et al. Validation of metabolic syndrome score by confirmatory factor analysis in children and adults and prediction of cardiometabolic outcomes in adults. Diabetologia 2014; 57: 940 â 949.
dc.identifier.citedreferenceConwell LS, Trost SG, Brown WJ, Batch JA. Indexes of insulin resistance and secretion in obese children and adolescents: a validation study. Diabetes Care 2004; 27: 314 â 319.
dc.identifier.citedreferenceGeorge L, Bacha F, Lee S, Tfayli H, Andreatta E, Arslanian S. Surrogate estimates of insulin sensitivity in obese youth along the spectrum of glucose tolerance from normal to prediabetes to diabetes. J Clin Endocrinol Metab 2011; 96: 2136 â 2145.
dc.identifier.citedreferenceGungor N, Saad R, Janosky J, Arslanian S. Validation of surrogate estimates of insulin sensitivity and insulin secretion in children and adolescents. J Pediatr 2004; 144: 47 â 55.
dc.identifier.citedreferenceBridges KG, Jarrett T, Thorpe A, Baus A, Cochran J. Use of the triglyceride to HDL cholesterol ratio for assessing insulin sensitivity in overweight and obese children in rural Appalachia. J Pediatr Endocrinol Metab 2016; 29: 153 â 156.
dc.identifier.citedreferenceBarker DJ, Bagby SP. Developmental antecedents of cardiovascular disease: a historical perspective. J Am Soc Nephrol 2005; 16: 2537 â 2544.
dc.identifier.citedreferenceSun SS, Liang R, Huang TTK, Daniels SR, Arslanian S, Liu K, et al. Childhood obesity predicts adult metabolic syndrome: The Fels Longitudinal Study. J Pediatr 2008; 152: 191 â 200.
dc.identifier.citedreferenceTu YK, West R, Ellison GT, Gilthorpe MS. Why evidence for the fetal origins of adult disease might be a statistical artifact: the â reversal paradoxâ for the relation between birth weight and blood pressure in later life. Am J Epidemiol 2005; 161: 27 â 32.
dc.identifier.citedreferenceWangâ Sattler R, Yu Z, Herder C, et al. Novel biomarkers for preâ diabetes identified by metabolomics. Mol Syst Biol 2012; 8: 615. doi: 10.1038/msb.2012.43
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.