Show simple item record

Selection for Catalytic Function with Nucleic Acids

dc.contributor.authorBreaker, Ronald R.
dc.date.accessioned2018-05-15T20:14:14Z
dc.date.available2018-05-15T20:14:14Z
dc.date.issued2000-02
dc.identifier.citationBreaker, Ronald R. (2000). "Selection for Catalytic Function with Nucleic Acids." Current Protocols in Nucleic Acid Chemistry 00(1): 9.4.1-9.4.17.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/143687
dc.description.abstractFor in vitro selection of catalytic polynucleotides, each new protocol must be designed to harness the desired catalytic activity to help propel the selection process itself. This unit gives guidelines for design of in vitro selection experiments for catalytic function. It outlines several representative protocols as examples of successful selection experiments, providing a conceptual basis for the design and implementation of new selective‐amplification protocols for nucleic acids.
dc.publisherWiley Periodicals, Inc.
dc.publisherCold Spring Harbor
dc.titleSelection for Catalytic Function with Nucleic Acids
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143687/1/cpnc0904.pdf
dc.identifier.doi10.1002/0471142700.nc0904s00
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceLehman, N. and Joyce, G.F. 1993. Evolution in vitro of an RNA enzyme with altered metal ion dependence. Nature 361: 182 ‐ 185.
dc.identifier.citedreferenceLiu, F. and Altman, S. 1994. Differential evolution of substrates for an RNA enzyme in the presence and absence of its protein cofactor. Cell 77: 1093 ‐ 1100.
dc.identifier.citedreferenceLorsch, J.R. and Szostak, J.W. 1994. In vitro evolution of new ribozymes with polynucleotide kinase activity. Nature 371: 31 ‐ 36.
dc.identifier.citedreferenceMilligan, J.F. and Uhlenbeck, O.C. 1989. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 180: 51 ‐ 62.
dc.identifier.citedreferenceOsborne, S.E. and Ellington, A.D. 1997. Nucleic acid selection and the challenge of combinatorial chemistry. Chem. Rev. 97: 349 ‐ 370.
dc.identifier.citedreferencePan, T. 1995. Novel RNA substrates for the ribozyme from Bacillus subtilis ribonuclease P identified by in vitro selection. Biochemistry 34: 8458 ‐ 8464.
dc.identifier.citedreferenceRashtchian, A. 1994. Amplification of RNA. PCR Meth. Appl. S83 ‐ S91.
dc.identifier.citedreferenceRobertson, D.L. and Joyce, G.F. 1990. Selection in vitro of an RNA enzyme that specifically cleaves single‐stranded DNA. Nature 344: 467 ‐ 468.
dc.identifier.citedreferenceRobertus, J.D., Ladner, J.E., Finch, J.T., Rhodes, D., Brown, R.S., Clark, B.F., and Klug, A. 1974. Structure of yeast phenylalanine tRNA at 3 Å resolution. Nature 250: 546 ‐ 551.
dc.identifier.citedreferenceSambrook, J., Fritsch, E.F., Maniatis, T. (eds.) 1989. Molecular Cloning, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
dc.identifier.citedreferenceStemmer, W.P.C. 1994. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370: 389 ‐ 391.
dc.identifier.citedreferenceSymons, R.H. 1992. Small catalytic RNAs. Annu. Rev. Biochem. 61: 641 ‐ 671.
dc.identifier.citedreferenceTsang, J., Joyce, G.F. 1996. Specialization of the DNA‐cleaving activity of a group I ribozyme through in vitro evolution. J. Mol. Biol. 262: 31 ‐ 42.
dc.identifier.citedreferenceVartanian, J.‐P., Henry, M., and Wain‐Hobson, S. 1996. Hypermutagenic PCR involving all four transitions and a sizeable proportion of transversions. Nucleic Acids Res. 14: 2627 ‐ 2631.
dc.identifier.citedreferenceWhite, H.B. III 1976. Coenzymes as fossils of an earlier metabolic state. J. Mol. Evol. 7: 101 ‐ 104.
dc.identifier.citedreferenceWilliams, K.P., Imahori, H., Fujimoto, D.N., and Inoue, T. 1994. Selection of novel forms of a functional domain within the Tetrahymena ribozyme. Nucleic Acids Res. 22: 2003 ‐ 2009.
dc.identifier.citedreferenceWincott, F., DiRenzo, A., Shaffer, C., Grimm, S., Tracz, D., Workman, C., Sweedler, D., Gonzalez, C., Scaringe, S., and Usman, N. 1995. Synthesis, deprotection, analysis and purification of RNA and ribozymes. Nucleic Acids Res. 23: 2677 ‐ 2684.
dc.identifier.citedreferenceWright, M.C. and Joyce, G.F. 1997. Continuous in vitro evolution of catalytic function. Science 267: 614 ‐ 617.
dc.identifier.citedreferenceYuan, Y. and Altman, S. 1994. Selection of guide sequences that direct efficient cleavage of mRNA by human ribonuclease P. Science 263: 1269 ‐ 1273.
dc.identifier.citedreferenceZhao, H., Giver, L., Shao, Z., Affholter, J.A., and Arnold, F.H. 1998. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nature Biotechnol. 16: 258 ‐ 261.
dc.identifier.citedreferenceBartel, D.P. and Szostak, J.W. 1993. Isolation of new ribozymes from a large pool of random sequences. Science 261: 1411 ‐ 1418.
dc.identifier.citedreferenceBeaudry, A.A. and Joyce, G.F. 1992. Directed evolution of an RNA enzyme. Science 257: 635 ‐ 641.
dc.identifier.citedreferenceBenner, S.A., Ellington, A.D., and Tauer, A. 1989. Modern metabolism as a palimpsest of the RNA world. Proc. Natl. Acad. Sci. U.S.A. 86: 7054 ‐ 7058.
dc.identifier.citedreferenceBreaker, R.R. and Joyce, G.F. 1994a. Inventing and improving ribozyme function: rational design versus iterative selection methods. Trends Biotechnol. 12: 268 ‐ 275.
dc.identifier.citedreferenceBreaker, R.R. and Joyce, G.F. 1994b. Emergence of a replicating species from an in vitro RNA evolution reaction. Proc. Natl. Acad. Sci. U.S.A. 91: 6093 ‐ 6097.
dc.identifier.citedreferenceBreaker, R.R., Banerji, A., and Joyce, G.F. 1996. Continuous in vitro evolution of bacteriophage RNA polymerase promoters. Biochemistry 33: 11980 ‐ 11986.
dc.identifier.citedreferenceBreaker, R.R. 1997a. In vitro selection of catalytic polynucleotides. Chem. Rev. 97: 371 ‐ 390.
dc.identifier.citedreferenceBreaker, R.R. 1997b. DNA aptamers and DNA enzymes. Curr. Opin. Chem. Biol. 1: 26 ‐ 31.
dc.identifier.citedreferenceCadwell, R.C. and Joyce, G.F. 1992. Randomization of genes by PCR mutagenesis. PCR Methods Appl. 2: 28 ‐ 33.
dc.identifier.citedreferenceCech, T.R. 1990. Self‐splicing of group I introns. Annu. Rev. Biochem. 59: 543 ‐ 568.
dc.identifier.citedreferenceCech, T.R. 1993. The efficiency and versatility of catalytic RNA: Implications for an RNA world. Gene 135: 33 ‐ 36.
dc.identifier.citedreferenceCosta, M. and Michel, F. 1997. Rules for RNA recognition of GNRA tetraloops deduced by in vitro selection: Comparison with in vivo evolution. EMBO J. 16: 3289 ‐ 3302.
dc.identifier.citedreferenceFahy, E., Kwoh, D.Y., and Gingeras, T.R. 1991. Self‐sustained sequence replication (3SR): An isothermal transcription‐based amplification system alternative to PCR. PCR Methods Appl. 1: 25 ‐ 33.
dc.identifier.citedreferenceFrank, D.N. and Pace, N.R. 1997. In vitro selection for altered divalent metal specificity in the RNase P RNA. Proc. Natl. Acad. Sci. U.S.A. 94: 14355 ‐ 14360.
dc.identifier.citedreferenceFrank, D.N., Ellington, A.E., and Pace, N.R. 1996. In vitro selection of RNase P RNA reveals optimized catalytic activity in a highly conserved structural domain. RNA 2: 1179 ‐ 1188.
dc.identifier.citedreferenceGilbert, W. 1986. The RNA world. Nature 319: 618.
dc.identifier.citedreferenceGold, L., Polisky, B., Uhlenbeck, O., and Yarus, M. 1995. Diversity of oligonucleotide functions. Annu. Rev. Biochem. 64: 736 ‐ 797.
dc.identifier.citedreferenceGreen, R., Ellington, A.D., and Szostak, J.W. 1990. In vitro genetic analysis of the Tetrahymena self‐splicing intron. Nature 347: 406 ‐ 408.
dc.identifier.citedreferenceGuatelli, J.C., Whitfield, K.M., Kwoh, D.Y., Barringer, K.J., Richman, D.D., and Gingeras, T.R. 1990. Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc. Natl. Acad. Sci. U.S.A. 87: 1874 ‐ 1878.
dc.identifier.citedreferenceGuerrier‐Takada, C., Gardiner, K., Marsh, T., Pace, N., and Altman, S. 1983. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35: 849 ‐ 857.
dc.identifier.citedreferenceHerschlag, D. and Cech, T.R. 1990. DNA‐cleavage catalysed by the ribozyme from Tetrahymena. Nature 344: 405 ‐ 409.
dc.identifier.citedreferenceJaeger, L. 1997. The new world of ribozymes. Curr. Opin. Struct. Biol. 7: 324 ‐ 335.
dc.identifier.citedreferenceJoyce, G.F. and Inouye, T. 1989. A novel technique for the rapid preparation of mutant RNAs. Nucleic Acids Res. 17: 711 ‐ 722.
dc.identifier.citedreferenceKim, S.H., Quigley, G.J., Suddath, F.L., McPherson, A., Sneden, D., Kim, J.J., Weinzierl, J., and Rich, A. 1973. Three‐dimensional structure of yeast phenylalanine transfer RNA: Folding of the polynucleotide chain. Science 179: 285 ‐ 288.
dc.identifier.citedreferenceKruger, K., Grabowski, P.J., Zaug, A.J., Sands, J., Gottschling, D.E., and Cech, T.R. 1982. Self‐splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31: 147 ‐ 157.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.