Show simple item record

Character evolution and missing (morphological) data across Asteridae

dc.contributor.authorStull, Gregory W.
dc.contributor.authorSchori, Melanie
dc.contributor.authorSoltis, Douglas E.
dc.contributor.authorSoltis, Pamela S.
dc.date.accessioned2018-05-15T20:14:20Z
dc.date.available2019-05-13T14:45:27Zen
dc.date.issued2018-03
dc.identifier.citationStull, Gregory W.; Schori, Melanie; Soltis, Douglas E.; Soltis, Pamela S. (2018). "Character evolution and missing (morphological) data across Asteridae." American Journal of Botany 105(3): 470-479.
dc.identifier.issn0002-9122
dc.identifier.issn1537-2197
dc.identifier.urihttps://hdl.handle.net/2027.42/143691
dc.publisherColumbia University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherGentianidae
dc.subject.otheriridoids
dc.subject.otherLamiidae
dc.subject.othermorphology
dc.subject.othercharacter evolution
dc.subject.otherCampanulidae
dc.subject.otherAsteridae
dc.subject.otherangiosperm synapomorphies
dc.titleCharacter evolution and missing (morphological) data across Asteridae
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBotany
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/1/ajb21050-sup-0007-AppendixS7.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/2/ajb21050_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/3/ajb21050-sup-0019-AppendixS19.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/4/ajb21050-sup-0013-AppendixS13.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/5/ajb21050-sup-0014-AppendixS14.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/6/ajb21050-sup-0012-AppendixS12.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/7/ajb21050-sup-0009-AppendixS9.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/8/ajb21050-sup-0018-AppendixS18.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/9/ajb21050.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/10/ajb21050-sup-0004-AppendixS4.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/11/ajb21050-sup-0008-AppendixS8.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/12/ajb21050-sup-0005-AppendixS5.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/13/ajb21050-sup-0017-AppendixS17.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/14/ajb21050-sup-0006-AppendixS6.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/15/ajb21050-sup-0011-AppendixS11.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/16/ajb21050-sup-0016-AppendixS16.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/17/ajb21050-sup-0015-AppendixS15.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/18/ajb21050-sup-0010-AppendixS10.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143691/19/ajb21050-sup-0003-AppendixS3.pdf
dc.identifier.doi10.1002/ajb2.1050
dc.identifier.sourceAmerican Journal of Botany
dc.identifier.citedreferenceSchori, M. 2016. Cardiopteridaceae. In J. W. Kadereit and V. Bittrich [eds.], The families and genera of vascular plants, vol. 14, Flowering plants. Eudicots. Springer International Publishing, Cham, Switzerland.
dc.identifier.citedreferenceSleumer, H. 1971. Icacinaceae. In C. G. G. J. van Steenis [ed.], Flora Malesiana, series I, vol. 7, 1 – 87. Noordho, Leyden, Netherlands.
dc.identifier.citedreferenceSmith, S. A., and M. J. Donoghue. 2008. Rates of molecular evolution are linked to life history in flowering plants. Science 322: 86 – 89.
dc.identifier.citedreferenceSoltis, D. E., M. A. Gitzendanner, G. W. Stull, M. Chester, A. Chanderbali, S. Chamala, I. Jordon‐Thaden, P. S. Soltis, P. S. Schnable, and W. B. Barbazuk. 2013a. The potential of genomics in plant systematics. Taxon 62: 886 – 898.
dc.identifier.citedreferenceSoltis, D. E., M. E. Mort, M. Latvis, E. V. Mavrodiev, B. C. O’Meara, P. S. Soltis, J. G. Burleigh, and R. Rubio de Casas. 2013b. Phylogenetic relationships and character evolution analysis of Saxifragales using a supermatrix approach. American Journal of Botany 100: 916 – 929.
dc.identifier.citedreferenceSoltis, D. E., S. A. Smith, N. Cellinese, K. J. Wurdack, D. C. Tank, S. F. Brockington, N. F. Refulio‐Rodriguez, et al. 2011. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98: 704 – 730.
dc.identifier.citedreferenceSoltis, D. E., P. S. Soltis, M. W. Chase, M. E. Mort, D. C. Albach, M. Zanis, V. Savolainen, et al. 2000. Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Botanical Journal of the Linnean Society 133: 381 – 461.
dc.identifier.citedreferenceSoltis, D. E., P. S. Soltis, P. K. Endress, and M. W. Chase. 2005. Phylogeny and evolution of angiosperms. Sinauer, Sunderland, MA, USA.
dc.identifier.citedreferenceSoltis, D. E., P. S. Soltis, D. L. Nickrent, L. A. Johnson, W. J. Hahn, S. B. Hoot, J. A. Sweere, et al. 1998. Phylogenetic relationships among angiosperms inferred from 18S rDNA sequences. Annals of the Missouri Botanical Garden 84: 1 – 49.
dc.identifier.citedreferenceSoltis, P. S., D. E. Soltis, and M. W. Chase. 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402: 402 – 404.
dc.identifier.citedreferenceStamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post‐analysis of large phylogenies. Bioinformatics 30: 1312 – 1313.
dc.identifier.citedreferenceStevens, P. F. 1991. Character states, morphological variation, and phylogenetic analysis: a review. Systematic Botany 16: 553 – 583.
dc.identifier.citedreferenceStevens, P. F. 2001 onward. Angiosperm Phylogeny Website, version 12. Website http://www.mobot.org/MOBOT/research/APweb/ [accessed 20 April 2017].
dc.identifier.citedreferenceStull, G. W., R. Duno de Stefano, D. E. Soltis, and P. S. Soltis. 2015. Resolving basal lamiid phylogeny and the circumscription of Icacinaceae with a plastome‐scale data set. American Journal of Botany 102: 1794 – 1813.
dc.identifier.citedreferenceTakhtajan, A. L. 1980. Outline of the classification of flowering plants (Magnoliophyta). Botanical Review 46: 225 – 359.
dc.identifier.citedreferenceTakhtajan, A. L. 1997. Diversity and classification of flowering plants. Columbia University Press, NY, NY, USA.
dc.identifier.citedreferenceTakhtajan, A. L. 2009. Flowering plants, 2nd ed. Springer, Dordrecht, Netherlands.
dc.identifier.citedreferenceTank, D. C., and M. J. Donoghue. 2010. Phylogeny and phylogenetic nomenclature of the Campanulidae based on an expanded sample of the genes and taxa. Systematic Botany 35: 425 – 441.
dc.identifier.citedreferenceWang, H., M. J. Moore, P. S. Soltis, C. D. Bell, S. F. Brockington, R. Alexandre, C. C. Davis, et al. 2009. Rosid radiation and the rapid rise of angiosperm‐dominated forests. Proceedings of the National Academy of Sciences, USA 106: 3853 – 3858.
dc.identifier.citedreferenceWickett, N. J., S. Mirarab, N. Nguyen, T. Warnow, E. Carpenter, N. Matasci, S. Ayyampalayam, et al. 2014. A phylotranscriptomics analysis of the origin and early diversification of land plants. Proceedings of the National Academy of Sciences, USA 111: E4859 – E4868.
dc.identifier.citedreferenceWiens, J. J. 2001. Character analysis in morphological phylogenetics: problems and solutions. Systematic Biology 50: 689 – 699.
dc.identifier.citedreferenceWu, Z.‐Y., R. I. Milne, C.‐J. Chen, J. Liu, H. Wang, and D.‐Z. Li. 2015. Ancestral state reconstruction reveals rampant homoplasy of diagnostic morphological characters in Urticaceae, conflicting with current classification. PLoS ONE 10: e0141821.
dc.identifier.citedreferenceWurdack, K. J., and C. C. Davis. 2009. Malpighiales phylogenetics: gaining ground on one of the most recalcitrant clades in the angiosperm tree of life. American Journal of Botany 96: 1551 – 1570.
dc.identifier.citedreferenceXi, Z., L. Liu, J. S. Rest, and C. C. Davis. 2014. Coalescent versus concatenation methods and the placement of Amborella as sister to water lilies. Systematic Biology 63: 919 – 932.
dc.identifier.citedreferenceXi, Z., B. R. Ruhfel, H. Schaefer, A. M. Amorim, M. Sugumaran, K. J. Wurdack, P. K. Endress, et al. 2012. Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales. Proceedings of the National Academy of Sciences, USA 109: 17519 – 17524.
dc.identifier.citedreferenceZanne, A. E., D. C. Tank, W. K. Cornwell, J. M. Eastman, S. A. Smith, R. G. FitzJohn, D. J. McGlinn, et al. 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506: 89 – 92.
dc.identifier.citedreferenceZeng, L., Q. Zhang, R. Sun, H. Kong, N. Zhang, and H. Ma. 2014. Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times. Nature Communications 5: 4956.
dc.identifier.citedreferenceAlbach, D. C., P. S. Soltis, and D. E. Soltis. 2001a. Patterns of embryological and biochemical evolution in the asterids. Systematic Botany 26: 242 – 262.
dc.identifier.citedreferenceAlbach, D. C., P. S. Soltis, D. E. Soltis, and R. G. Olmstead. 2001b. Phylogenetic analysis of asterids based on sequences of four genes. Annals of the Missouri Botanical Garden 88: 162 – 212.
dc.identifier.citedreferenceAngiosperm Phylogeny Group. 1998. An ordinal classification for the families of the flowering plants. Annals of the Missouri Botanical Garden 85: 531 – 553.
dc.identifier.citedreferenceAPG, II [Angiosperm Phylogeny Group II]. 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society 141: 399 – 436.
dc.identifier.citedreferenceAPG, III [Angiosperm Phylogeny Group III]. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnaean Society 161: 105 – 121.
dc.identifier.citedreferenceAPG, IV [Angiosperm Phylogeny Group IV]. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1 – 20.
dc.identifier.citedreferenceBailey, I. W., and R. A. Howard. 1941a. The comparative morphology of the Icacinaceae I. Anatomy of the node and internode. Journal of the Arnold Arboretum 22: 125 – 132.
dc.identifier.citedreferenceBailey, I. W., and R. A. Howard. 1941b. The comparative morphology of the Icacinaceae II. Vessels. Journal of the Arnold Arboretum 22: 171 – 187.
dc.identifier.citedreferenceBeaulieu, J. M., and M. J. Donoghue. 2013. Fruit evolution and diversification in campanulid angiosperms. Evolution 67: 3132 – 3144.
dc.identifier.citedreferenceBremer, K., A. Backlund, B. Sennblad, U. Swenson, K. Andreasen, M. Hjertson, J. Lundberg, M. Backlund, and B. Bremer. 2001. A phylogenetic analysis of 100+ genera and 50+ families of euasterids based on morphological and molecular data with notes on possible higher level morphological synapomorphies. Plant Systematics and Evolution 229: 137 – 169.
dc.identifier.citedreferenceBremer, B., K. Bremer, N. Heidari, P. Erixon, R. G. Olmstead, A. A. Anderberg, M. Källersjö, and E. Barkhordarian. 2002. Phylogenetics of asterids based on 3 coding and 3 non‐coding chloroplast DNA markers and the utility of non‐coding DNA at higher taxonomic levels. Molecular Phylogenetics and Evolution 24: 274 – 301.
dc.identifier.citedreferenceCantino, P. D., J. A. Doyle, S. W. Graham, W. S. Judd, R. G. Olmstead, D. E. Soltis, P. S. Soltis, and M. J. Donoghue. 2007. Towards a phylogenetic nomenclature of Tracheophyta. Taxon 56: 822 – 846.
dc.identifier.citedreferenceChase, M. W, D. E. Soltis, R. G. Olmstead, D. Morgan, D. H. Les, B. D. Mishler, M. R. Duvall, et al. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Annals of the Missouri Botanical Garden 80: 528 – 548 +550–580.
dc.identifier.citedreferenceChristenhuszn, M. J. M., and J. W. Byng. 2016. The number of known plant species in the world and its annual increase. Phytotaxa 261: 201 – 217.
dc.identifier.citedreferenceCronquist, A. 1981. An integrated system of classification of flowering plants. Columbia University Press, NY, NY, USA.
dc.identifier.citedreferenceCronquist, A. 1988. The evolution and classification of flowering plants, 2nd ed. New York Botanical Garden, NY, NY, USA.
dc.identifier.citedreferencede Jussieu, A.‐L. 1789. Genera plantarum. Herissant & Barrois, Paris.
dc.identifier.citedreferenceDickison, W. C. 1986. Further observations on the oral anatomy and pollen morphology of Oncotheca (Oncothecaceae). Brittonia 38: 249 – 259.
dc.identifier.citedreferenceDickison, W. C., and V. Bittrich. 2016. Metteniusaceae. In J. W. Kadereit and V. Bittrich [eds.], The families and genera of vascular plants, vol. 14, Flowering plants. Eudicots. Springer International Publishing, Cham, Switzerland.
dc.identifier.citedreferenceDonoghue, M. J., and D. D. Ackerly. 1996. Phylogenetic uncertainties and sensitivity analyses in comparative biology. Philosophical Transactions of the Royal Society 351: 1241 – 1249. (Reprinted in: Silvertown, J., M. Franco, and J. L. Harper. 1997. Plant Life Histories: Ecology, Phylogeny and Evolution. Cambridge Univ. Press).
dc.identifier.citedreferenceDoyle, J. A. 2005. Early evolution of angiosperm pollen as inferred from molecular and morphological phylogenetic analyses. Grana 44: 227 – 251.
dc.identifier.citedreferenceDoyle, J. A. 2007. Systematic value and evolution of leaf architecture across the angiosperms in light of molecular phylogenetic analyses. Cfs Courier Forschungsinstitut Senckenberg 21 – 37.
dc.identifier.citedreferenceeFloras. 2008. http://www.efloras.org [accessed April 2017]. Missouri Botanical Garden, St. Louis, MO, USA; Harvard University Herbaria, Cambridge, MA, USA.
dc.identifier.citedreferenceEndress, P. K. 1996. Homoplasy in angiosperm flowers. In M. J. Sanderson and L. Hufford [eds.], Homoplasy: The recurrence of similarity in evolution. Academic Press, San Diego, CA, USA.
dc.identifier.citedreferenceEndress, P. K. 2010. Flower structure and trends of evolution in eudicots and their major subclades. Annals of the Missouri Botanical Garden 97: 541 – 583.
dc.identifier.citedreferenceEndress, P. K. 2011a. Angiosperm ovules: diversity, development, and evolution. Annals of Botany 107: 1465 – 1489.
dc.identifier.citedreferenceEndress, P. K. 2011b. Evolutionary diversification of the flowers in angiosperms. American Journal of Botany 98: 370 – 396.
dc.identifier.citedreferenceEndress, P. K., and J. A. Doyle. 2009. Reconstructing the ancestral angiosperm flower and its initial specializations. American Journal of Botany 96: 22 – 66.
dc.identifier.citedreferenceEndress, P. K., and J. A. Doyle. 2015. Ancestral traits and specializations in the flowers of the basal grade of living angiosperms. Taxon 64: 1093 – 1116.
dc.identifier.citedreferenceEndress, P. K., and A. Rapini. 2014. Floral structure of Emmotum (Icacinaceae sensu stricto or Emmotaceae), a phylogenetically isolated genus of lamiids with a unique pseudotrimerous gynoecium, bitegmic ovules and monosporangiate thecae. Annals of Botany 114: 945 – 959.
dc.identifier.citedreferenceErbar, C. 1991. Sympetalae—a systematic character? Botanische Jahrbücher für Systematik 112: 417 – 451.
dc.identifier.citedreferenceErbar, C., and P. Leins. 1996. Distribution of the character states ‘‘early’’ and ‘‘late sympetaly’’ within the ‘‘Sympetalae Tetracyclicae’’ and presumably related groups. Botanica Acta 109: 427 – 440.
dc.identifier.citedreferenceErbar, C., P. Leins, B.‐E. van Wyk, and P. M. Tilney. 2004. Sympetaly in Apiales (Apiaceae, Araliaceae, Pittosporaceae). South African Journal of Botany 70: 458 – 467.
dc.identifier.citedreferenceFagerlind, F. 1945. Bau des Gynöceums, der Samenanlage und des Embryosackes bei einigen Repräsentanten der Familie Icacinaceae. Svensk Botanisk Tidskrift 39: 346 – 364.
dc.identifier.citedreferenceFitzJohn, R. G., M. W. Pennell, A. E. Zanne, P. F. Stevens, D. C. Tank, and W. K. Cornwell. 2014. How much of the world is woody? Journal of Ecology 102: 1266 – 1272.
dc.identifier.citedreferenceFlora of North America Editorial Committee [eds.]. 1993 onward. Flora of North America North of Mexico. 20+ vols. Oxford University Press, New York, USA; Oxford, UK.
dc.identifier.citedreferenceFolk, R. A., P. S. Soltis, D. E. Soltis, and R. Guralnick. 2018. New prospects in the detection and comparative analysis of hybridization in the tree of life. American Journal of Botany. https://doi.org/10.1002/ajb2.1018.
dc.identifier.citedreferenceGalis, F. 2001. Kew innovations and radiations. In G. P. Wagner [ed.], The character concept in evolutionary biology. Academic Press, San Diego, CA, USA.
dc.identifier.citedreferenceGianoli, E. 2004. Evolution of a climbing habit promotes diversification in flowering plants. Proceedings of the Royal Society of London, B, Biological Science 271: 2011 – 2015.
dc.identifier.citedreferenceGonzález, F. A., and P. J. Rudall. 2010. Flower and fruit characters in the early‐divergent lamiid family Metteniusaceae, with particular reference to the evolution of pseudomonomery. American Journal of Botany 97: 191 – 206.
dc.identifier.citedreferenceGovaerts, R. 2001. How many species of seed plants are there? Taxon 50: 1085 – 1090.
dc.identifier.citedreferenceGovaerts, R. 2003. How many species of seed plants are there? – a response. Taxon 52: 583 – 584.
dc.identifier.citedreferenceHoward, R. A. 1940. Studies of the Icacinaceae. I. Preliminary taxonomic notes. Journal of the Arnold Arboretum 21: 461 – 489.
dc.identifier.citedreferenceHoward, R. A. 1942a. Studies of the Icacinaceae. II. Humirianthera, Leretia, Mappia, and Nothapodytes, valid genera of the Icacineae. Journal of the Arnold Arboretum 23: 55 – 78.
dc.identifier.citedreferenceHoward, R. A. 1942b. Studies of the Icacinaceae. III. A revision of Emmotum. Journal of the Arnold Arboretum 23: 479 – 494.
dc.identifier.citedreferenceHoward, R. A. 1942c. Studies of the Icacinaceae. IV. Considerations of the New World genera. Contributions from the Gray Herbarium of Harvard University 142: 3 – 60.
dc.identifier.citedreferenceHoward, R. A. 1942d. Studies of the Icacinaceae. V. A revision of the genus Citronella D. Don. Contributions from the Gray Herbarium of Harvard University 142: 60 – 89.
dc.identifier.citedreferenceHoward, R. A. 1992. A revision of Casimirella, including Humirianthera (Icacinaceae). Brittonia 44: 166 – 172.
dc.identifier.citedreferenceHuelsenbeck, J. P., and F. R. Ronquist. 2001. MrBayes: Bayesian inference of phylogeny. Biometrics 17: 754 – 755.
dc.identifier.citedreferenceJansen, R. K., Z. Cai, L. A. Raubeson, H. Daniell, C. W. dePamphilis, J. Leebens‐Mack, K. F. Müller, et al. 2007. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome‐scale evolutionary patterns. Proceedings of the National Academy of Sciences, USA 104: 19369 – 19374.
dc.identifier.citedreferenceJensen, S. R. 2000. Chemical relationships of Polypremum procumbens, Tetrachondra hamiltonii, and Peltanthera floribunda. Biochemical Systematics and Ecology 28: 45 – 51.
dc.identifier.citedreferenceJudd, W. S. 1985. A revised traditional/descriptive classification of fruits for use in floristics and teaching. Phytologia 58: 232 – 242.
dc.identifier.citedreferenceJudd, W. S., and R. G. Olmstead. 2004. A survey of tricolpate (eudicot) phylogenetic relationships. American Journal of Botany 91: 1627 – 1644.
dc.identifier.citedreferenceJudd, W. S., C. S. Campbell, E. A. Kellogg, P. F. Stevens, and M. J. Donoghue. 2016. Plant systematics: a phylogenetic approach, 4th ed. Sinauer, Sunderland, MA, USA.
dc.identifier.citedreferenceKaplan, M. A. C., and O. R. Gottlieib. 1982. Iridoids as systematic markers in dicotyledons. Biochemical Systematics and Ecology 10: 329 – 347.
dc.identifier.citedreferenceKårehed, J. 2001. Multiple origins of the tropical forest tree family Icacinaceae. American Journal of Botany 88: 2259 – 2274.
dc.identifier.citedreferenceKnapp, S. 2002. Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in Solanaceae. Journal of Experimental Botany 53: 2001 – 2022.
dc.identifier.citedreferenceLeins, P., and C. Erbar. 2004. Floral organ sequences in Apiales (Apiaceae, Araliaceae, Pittosporaceae). South African Journal of Botany 70: 468 – 474.
dc.identifier.citedreferenceLens, F., J. Kårehed, P. Baas, S. Jansen, D. Rabaey, S. Huysmans, T. Hamann, and E. Smets. 2008. The wood anatomy of the polyphyletic Icacinaceae s.l., and their relationships within asterids. Taxon 57: 525 – 552.
dc.identifier.citedreferenceLeubert, F., L. Cecchi, M. W. Frohlich, M. Gottschling, C. M. Guilliams, K. E. Hasenstab‐Lehman, and H. H. Hilger. 2016. Familial classification of the Boraginales. Taxon 65: 502 – 522.
dc.identifier.citedreferenceLiu, M., J. Zhao, J. Wang, Z. Liu, and G. Liu. 2017. Phylogenetic analysis of 25 plant species representing 19 angiosperm families and one gymnosperm family based on 390 orthologous genes. Plant Systematics and Evolution 303: 413 – 417.
dc.identifier.citedreferenceMaddison, W. P., and D. R. Maddison. 2017. Mesquite: a modular system for evolutionary analysis, version 3.2. Computer program and documentation distributed by the author, website http://mesquiteproject.org [accessed 20 April 2017].
dc.identifier.citedreferenceMauritzon, J. 1936. Embryologische Angaben über Stackhousiaceae, Hippocrateaceae, und Icacinaceae. Svensk Botanisk Tidskrift 30: 541 – 550.
dc.identifier.citedreferenceMiller, A. 1949. Some ecologic and morphologic considerations in the evolution of higher taxonomic categories. In E. Mayr and E. Schüz [eds.], Ornithologie als Biologische Wissenschaft, 84 – 88. Universitätsverlag, Heidelberg, Germany.
dc.identifier.citedreferenceMoore, M. J., C. D. Bell, P. S. Soltis, and D. E. Soltis. 2007. Using plastid genomic‐scale data to resolve enigmatic relationships among basal angiosperms. Proceedings of the National Academy of Sciences, USA 104: 19363 – 19368.
dc.identifier.citedreferenceMoore, M. J., A. Dhingra, P. S. Soltis, R. Shaw, W. G. Farmerie, K. M. Folta, and D. E. Soltis. 2006. Rapid and accurate pyrosequencing of angiosperm plastid genomes. BMC Plant Biology 6: 17 – 30.
dc.identifier.citedreferenceMoore, M. J., P. S. Soltis, C. D. Bell, J. G. Burleigh, and D. E. Soltis. 2010. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proceedings of the National Academy of Sciences, USA 107: 4623 – 4628.
dc.identifier.citedreferenceNixon, K. C., and J. I. Davis. 1991. Polymorphic taxa, missing values and cladistic analyses. Cladistics 7: 233 – 241.
dc.identifier.citedreferenceOlmstead, R. G., B. Bremer, K. M. Scott, and J. D. Palmer. 1993. A parsimony analysis of the Asteridae sensu lato based on rbcL sequences. Annals of the Missouri Botanical Garden 80: 700 – 722.
dc.identifier.citedreferenceOlmstead, R. G., K.‐J. Kim, R. K. Jansen, and S. J. Wagstaff. 2000. The phylogeny of the Asteridae sensu lato based on chloroplast ndhF gene sequences. Molecular Phylogenetics and Evolution 16: 96 – 112.
dc.identifier.citedreferenceOlmstead, R. G., H. J. Michaels, K. M. Scott, and J. D. Palmer. 1992. Monophyly of the Asteridae and identification of their major lineages inferred from DNA sequences of rbcL. Annals of the Missouri Botanical Garden 79: 249 – 265.
dc.identifier.citedreferencePagel, M., A. Meade, and D. Barker. 2004. Bayesian estimation of ancestral character states on phylogenies. Systematic Biology 53: 673 – 684.
dc.identifier.citedreferencePagel, M., and A. Meade. 2006. Bayesian analysis of correlated evolution of discrete characters by reversible‐jump Markov chain Monte Carlo. American Naturalist 167: 808 – 825.
dc.identifier.citedreferencePeng, H., and R. A. Howard. 2008. Icacinaceae. In Z. Y. Wu, P. H. Raven, and D. Y. Hong [eds.], Flora of China, vol. 11, 505 – 514. Science Press, Beijing, China; Missouri Botanical Garden Press, St. Louis, MO, USA.
dc.identifier.citedreferencePotgieter, M. J., and R. Duno. 2016. Icacinaceae. In J. W. Kadereit and V. Bittrich [eds.], The families and genera of vascular plants, vol. 14, Flowering plants. Eudicots. Springer International Publishing, Cham, Switzerland.
dc.identifier.citedreferencePotgieter, M. J., M. Schori, and T. M. A. Utteridge. 2016. Stemonuraceae. In J. W. Kadereit and V. Bittrich [eds.], The families and genera of vascular plants, vol. 14, Flowering plants. Eudicots. Springer International Publishing, Cham, Switzerland.
dc.identifier.citedreferenceRambaut, A., and A. J. Drummond. 2009. Tracer, version 1.5 for Macintosh. Computer program and documentation distributed by the author, website http://beast.bio.ed.ac.uk/Tracer.
dc.identifier.citedreferenceRefulio‐Rodriguez, N. F., and R. G. Olmstead. 2014. Phylogeny of Lamiidae. American Journal of Botany 101: 287 – 299.
dc.identifier.citedreferenceRonquist, F., M. Teslenko, P. van der Mark, D. Ayres, A. Darling, S. Höhna, B. Larget, et al. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539 – 542.
dc.identifier.citedreferenceRonse De Craene, L. P. 2008. Homology and evolution of petals in the core eudicots. Systematic Botany 33: 301 – 325.
dc.identifier.citedreferenceRonse De Craene, L. P., and S. Brockington. 2013. Origin and evolution of petals in the angiosperms. Plant Ecology and Evolution 146: 5 – 25.
dc.identifier.citedreferenceRonse De Craene, L. P., D. E. Soltis, and P. S. Soltis. 2003. Evolution of floral structures in the basal angiosperms. International Journal of Plant Sciences 164 ( Supplement 5 ): S329 – S363.
dc.identifier.citedreferenceSalisbury, B. A., and J. Kim. 2001. Ancestral state estimation and taxon sampling density. Systematic Biology 50: 557 – 564.
dc.identifier.citedreferenceSauquet, H., M. von Balthazar, S. Magallón, J. A. Doyle, P. K. Endress, E. J. Bailes, E. Barroso, et al. 2017. The ancestral flower of angiosperms and its early diversification. Nature Communications 8: 16047. https://doi.org/10.1038/ncomms16047.
dc.identifier.citedreferenceSavolainen, V., M. W. Chase, S. B. Hoot, C. M. Morton, D. E. Soltis, C. Bayer, M. F. Fay, A. Y. de Bruijn, S. Sullivan, and Y.‐L. Qiu. 2000b. Phylogenetics of flowering plants based upon a combined analysis of plastid atpB and rbcL gene sequences. Systematic Biology 49: 306 – 362.
dc.identifier.citedreferenceSavolainen, V., M. F. Fay, D. C. Albach, A. Backlund, M. van der Bank, K. M. Cameron, S. A. Johnson, et al. 2000a. Phylogeny of eudicots: a nearly complete familial analysis based on rbcL gene sequences. Kew Bulletin 55: 257 – 309.
dc.identifier.citedreferenceScotland, R. W., R. G. Olmstead, and J. R. Bennett. 2003. Phylogeny reconstruction: the role of morphology. Systematic Biology 52: 539 – 548.
dc.identifier.citedreferenceSleumer, H. 1942. Icacinaceae. In A. Engler [ed.], Die natürlichen P anzenfamilien, 2nd ed., vol. 20b, 322 – 396. Wilhelm Engelmann, Leipzig, Germany.
dc.identifier.citedreferenceSleumer, H. 1969. Materials towards the knowledge of the Icacinaceae of Asia, Malesia, and adjacent areas. Blumea 17: 181 – 264.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.