Show simple item record

Molecular Modeling of Nucleic Acid Structure: Energy and Sampling

dc.contributor.authorCheatham, Thomas E.
dc.contributor.authorBrooks, Bernard R.
dc.contributor.authorKollman, Peter A.
dc.date.accessioned2018-05-15T20:14:27Z
dc.date.available2018-05-15T20:14:27Z
dc.date.issued2001-04
dc.identifier.citationCheatham, Thomas E.; Brooks, Bernard R.; Kollman, Peter A. (2001). "Molecular Modeling of Nucleic Acid Structure: Energy and Sampling." Current Protocols in Nucleic Acid Chemistry 4(1): 7.8.1-7.8.20.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/143698
dc.description.abstractAn overview of computer simulation techniques as applied to nucleic acid systems is presented. This unit expands an accompanying overview unit (UNIT ) by discussing methods used to treat the energy and sample representative configurations. Emphasis is placed on molecular mechanics and empirical force fields.
dc.publisherWiley Periodicals, Inc.
dc.publisherOxford University Press
dc.titleMolecular Modeling of Nucleic Acid Structure: Energy and Sampling
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143698/1/cpnc0708.pdf
dc.identifier.doi10.1002/0471142700.nc0708s04
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferencevan Gunsteren, W.F. and Berendsen, H.J.C. 1990. Computer simulation of molecular dynamics: Methodology, applications, and perspectives in chemistry. Angew. Chem. Int. Ed. Engl. 29: 992 ‐ 1023.
dc.identifier.citedreferenceStraub, J.E. 1996. Optimization techniques with applications to proteins. In New Developments in Theoretical Studies of Proteins ( R. Elber, ed.)pp. 137 ‐ 196. World Scientific, Singapore.
dc.identifier.citedreferenceSzabo, A. and Ostlund, N.S. 1989. Modern Quantum Chemistry. McGraw‐Hill, New York.
dc.identifier.citedreferenceThiel, W. 1997. Computational methods for large molecules. J. Mol. Struct. 398: 1 ‐ 6.
dc.identifier.citedreferenceTuckerman, M., Berne, B.J., and Martyna, G.J. 1992. Reversible multiple time scale molecular dynamics. J. Chem. Phys. 97: 1990 ‐ 2001.
dc.identifier.citedreferenceValleau, J.P. and Whittington, S.G. 1977. A Guide to Monte Carlo for Statistical Mechanics: 1. Highways. In Statistical Mechanics A. A Modern Theoretical Chemistry ( B.J. Berne, ed.)pp. 137 ‐ 168. Plenum Press, New York.
dc.identifier.citedreferencevan Gunsteren, W.F. and Berendsen, H.J.C. 1987. Groningen molecular simulation (GROMOS) library manual. BIOMOS, Nijenborgh, Groningen, The Netherlands.
dc.identifier.citedreferencevan Gunsteren, W.F. and Mark, A.E. 1998. Validation of molecular dynamics simulation. J. Chem. Phys. 108: 6109 ‐ 6116.
dc.identifier.citedreferenceWang, J., Cieplak, P., and Kollman, P.A. 2000. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comp. Chem. 21: 1049 ‐ 1074.
dc.identifier.citedreferenceWiberg, K.B. 1965. A scheme for strain energy minimization. Application to the cycloalkanes. J. Am. Chem. Soc. 87: 1070 ‐ 1078.
dc.identifier.citedreferenceYoung, M.A., Jayaram, B., and Beveridge, D.L. 1997. Intrusion of counterions into the spine of hydration in the minor groove of B‐DNA: Fractional occupancy of electronegative pockets. J. Am. Chem. Soc. 119: 59 ‐ 69.
dc.identifier.citedreferenceZerner, M.C. 1991. Semiempirical molecular orbital methods. In Reviews in Computational Chemistry ( K.B. Lipkowitz and D.B. Boyd, eds.)pp. 313 ‐ 365. VCH, New York.
dc.identifier.citedreferenceZhurkin, V.B., Ulyanov, N.B., Gorin, A.A., and Jernigan, R.L. 1991. Static and statistical bending of DNA evaluated by Monte Carlo calculations. Proc. Natl. Acad. Sci. U.S.A. 88: 7046 ‐ 7050.
dc.identifier.citedreferencehttp://www.ccl.net or http://www.netsci.org/Resources/Software/Modeling
dc.identifier.citedreferencehttp://www.msg.ameslab.gov/GAMESS/GAMESS.html
dc.identifier.citedreferencehttp://www.dl.ac.uk/CCP/CCP1/gamess.html
dc.identifier.citedreferencehttp://www.gaussian.com
dc.identifier.citedreferencehttp://www.schrodinger.com
dc.identifier.citedreferencehttp://www.wavefunction.com
dc.identifier.citedreferencehttp://www.ccl.net
dc.identifier.citedreferencehttp://www.q‐chem.com
dc.identifier.citedreferencehttp://www.msi.com
dc.identifier.citedreferenceAllen, M.P. and Tildesley, D.J. 1987. Computer Simulation of Liquids. Oxford University Press, Oxford.
dc.identifier.citedreferenceAllinger, N.L. 1977. Conformational analysis 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J. Am. Chem. Soc. 99: 8127 ‐ 8134.
dc.identifier.citedreferenceAllinger, N.L., Yuh, Y.H., and Lii, J.H. 1989. Molecular mechanics. The MM3 force field for hydrocarbons.1. J. Am. Chem. Soc. 111: 8551 ‐ 8566.
dc.identifier.citedreferenceAllinger, N.L., Chen, K., and Lii, J.H. 1996. An improved force field (MM4) for saturated hydrocarbons. J. Comp. Chem. 17: 642 ‐ 668.
dc.identifier.citedreferenceBiesiadecki, J.J. and Skeel, R.D. 1993. Dangers of multiple time step methods. J. Comp. Phys. 109: 318 ‐ 328.
dc.identifier.citedreferenceBraxenthaler, M., Unger, R., Auerbach, J., Given, A., and Moult, J. 1997. Chaos in protein dynamics. Proteins 29: 417 ‐ 425.
dc.identifier.citedreferenceBrooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D., Swaminathan, J.S., and Karplus, M. 1983. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comp. Chem. 4: 187 ‐ 217.
dc.identifier.citedreferenceBrooks, C.L., III., Karplus, M., and Pettitt, B.M. 1988. Proteins. A Theoretical Perspective of Dynamics, Structure, and Thermodynamics. John Wiley & Sons, New York.
dc.identifier.citedreferenceCaldwell, J.W., Dang, L.X., and Kollman, P.A. 1990. Implementation of nonadditive intermolecular potentials by use of molecular dynamics: Development of a water‐water potential and water‐ion cluster interactions. J. Am. Chem. Soc. 112: 9144 ‐ 9147.
dc.identifier.citedreferenceChatfield, D.C., Eurenius, K.P., and Brooks, B.R. 1998. HIV‐1 protease cleavage mechanism: A theoretical investigation based on classical MD simulation and reaction path calculations using a hybrid QM/MM potential. Theochem. J. Mol. Struct. 423: 79 ‐ 92.
dc.identifier.citedreferenceCheatham, T.E. III. and Kollman, P.A. 1997. Molecular dynamics simulations highlight the structural differences in DNA:DNA, RNA:RNA and DNA:RNA hybrid duplexes. J. Am. Chem. Soc. 119: 4805 ‐ 4825.
dc.identifier.citedreferenceCheatham, T.E., III., Cieplak, P., and Kollman, P.A. 1999. A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat. J. Biomol. Struct. Dyn. 16: 845 ‐ 862.
dc.identifier.citedreferenceChiu, S.W., Clark, M., Subramaniam, S., and Jakobsson, E. 2000. Collective motion artifacts arising in long‐duration molecular dynamics simulations. J. Comp. Chem. 21: 121 ‐ 131.
dc.identifier.citedreferenceCornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., and Kollman, P.A. 1995. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117: 5179 ‐ 5197.
dc.identifier.citedreferenceCummins, P.L. and Gready, J.E. 1997. Coupled semiempirical molecular orbital and molecular mechanics model (QM/MM) for organic molecules in aqueous solution. J. Comp. Chem. 18: 1496 ‐ 1512.
dc.identifier.citedreferenceDeem, M.W. and Bader, J.S. 1996. A configurational bias Monte‐Carlo method for linear and cyclic peptides. Mol. Phys. 87: 1245 ‐ 1260.
dc.identifier.citedreferenceDixon, S.L. and Merz, K.M.J. 1997. Fast, accurate semiempirical molecular orbital calculations for macromolecules. J. Chem. Phys. 107: 879 ‐ 893.
dc.identifier.citedreferenceDodd, L.R., Boone, T.D., and Theodorou, D.N. 1993. A concerted rotation algorithm for atomistic Monte‐Carlo simulation of polymer melts and glasses. Mol. Phys. 78: 961 ‐ 996.
dc.identifier.citedreferenceErie, D.A., Breslauer, K.J., and Olson, W.K. 1993. A Monte Carlo method for generating structures of short single‐stranded DNA sequences. Biopolymers 33: 75 ‐ 105.
dc.identifier.citedreferenceField, M., Bash, P., and Karplus, M. 1990. A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulation. J. Comp. Chem. 11: 700 ‐ 733.
dc.identifier.citedreferenceFletcher, R. and Reeves, C.M. 1964. Function minimization by conjugate gradients. Computer J. 7: 149 ‐ 153.
dc.identifier.citedreferenceFoloppe, N. and MacKerell, A.D.J. 2000. All‐atom empirical force field for nucleic acids. 1) Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comp. Chem. 21: 86 ‐ 104.
dc.identifier.citedreferenceGao, J.L. 1996. Hybrid quantum and molecular mechanical simulations–An alternative avenue to solvent effects in organic chemistry. Acc. Chem. Res. 29: 298 ‐ 305.
dc.identifier.citedreferenceGorin, A.A., Ulyanov, N.B., and Zhurkin, V.B. 1990. S‐N transition of the sugar ring in B‐form DNA. Molekulyarnaya Biologiya 24: 1300 ‐ 1313.
dc.identifier.citedreferenceHalgren, T.A. 1996. Merck molecular force field 1. Basis, form, scope, parameterization, and performance of MMFF94. J. Comp. Chem. 17: 490 ‐ 519.
dc.identifier.citedreferenceHarvey, S.C., Tan, R.K.Z., and Cheatham, T.E. III. 1998. The flying ice cube: Velocity rescaling in molecular dynamics simulations leads to violation of equipartition. J. Comp. Chem. 19: 726 ‐ 740.
dc.identifier.citedreferenceHobza, P. and Sponer, J. 1999. Structure, energetics, and dynamics of the nucleic acid base pairs: Nonempirical ab initio calculations. Chem. Rev. 11: 3247 ‐ 3276.
dc.identifier.citedreferenceJorgensen, W. 1995. BOSS, Version 3.6. Yale University, New Haven.
dc.identifier.citedreferenceJorgensen, W.L. and Tirado‐Rives, J. 1996. Monte Carlo vs Molecular dynamics for conformational sampling. J. Phys. Chem. 100: 14508 ‐ 14513.
dc.identifier.citedreferenceJorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., and Klein, M.L. 1983. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79: 926 ‐ 935.
dc.identifier.citedreferenceJorgensen, W.L., Maxwell, D.S., and Tirado‐Rives, J. 1996. Development and testing of the OPLS all‐atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118: 11225 ‐ 11236.
dc.identifier.citedreferenceKollman, P.A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donni, D., Cieplak, P., Srinivasan, J., Case, D.A., and Cheatham, T.E. III. 2000. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res. 33: 889 ‐ 897.
dc.identifier.citedreferenceLahiri, A. and Nilsson, L. 1997. Properties of dianionic oxyphosphorane intermediates from hybrid QM/MM simulations: Implications for ribozyme reactions. J. Mol. Struct. 419: 51 ‐ 55.
dc.identifier.citedreferenceLangley, D.R. 1998. Molecular dynamics simulations of environment and sequence dependent DNA conformation: The development of the BMS nucleic acid force field and comparison with experimental results. J. Biomol. Struct. Dyn. 16: 487 ‐ 509.
dc.identifier.citedreferenceLavery, R., Zakrzewska, K., and Sklenar, H. 1995. JUMNA (junction minimisation of nucleic acids). Comp. Phys. Comm. 91: 135 ‐ 158.
dc.identifier.citedreferenceLeach, A.R. 1997. Molecular Modeling: Principles and Applications. Addison‐Wesley, Reading, Mass.
dc.identifier.citedreferenceLevine, I.N. 1991. Quantum Chemistry. Prentice Hall, Englewood Cliffs, N.J.
dc.identifier.citedreferenceMaple, J.R., Hwang, M.J., Stockfisch, T.P., Dinur, U., Waldman, M., Ewig, C.S., and Hagler, A.T. 1994. Derivation of class II force fields. 1. Methodology and quantum force field for the alkyl functional group and alkane molecules. J. Comp. Chem. 15: 162 ‐ 182.
dc.identifier.citedreferenceMcCammon, J.A. and Harvey, S.C. 1987. Dynamics of Proteins and Nucleic Acids. Cambridge University Press, Cambridge.
dc.identifier.citedreferenceMetropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E. 1953. Equation of state calculations by fast computing machines. J. Chem. Phys. 21: 1087 ‐ 1092.
dc.identifier.citedreferenceNesterova, E.N., Federov, O.U., Poltev, V.I., and Chuprina, V.P. 1997. The study of possible A and B conformations of alternating DNA using a new program for conformational analysis of duplexes (CONAN). J. Biomol. Struct. Dyn. 14: 459 ‐ 474.
dc.identifier.citedreferenceNoguti, T. and Go, N. 1985. Efficient Monte Carlo method for simulation of fluctuating conformations of native proteins. Biopolymers 24: 527 ‐ 546.
dc.identifier.citedreferenceNorthrup, S.H. and McCammon, J.A. 1980. Simulation methods for protein structure fluctuations. Biopolymers 19: 1001 ‐ 1016.
dc.identifier.citedreferencePastor, R.W. 1994. Techniques and applications of Langevin dynamics simulations. In The Molecular Dynamics of Liquid Crystals ( G. Luckhurst and C. Veracini, eds.)pp. 85 ‐ 138. Kluwer Academic Publishers, Amsterdam, The Netherlands.
dc.identifier.citedreferencePearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham, T.E., Debolt, S., Ferguson, D., Seibel, G., and Kollman, P. 1995. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structure and energetic properties of molecules. Comp. Phys. Comm. 91: 1 ‐ 41.
dc.identifier.citedreferenceRick, S.W., Stuart, S.J., and Berne, B.J. 1994. Dynamical fluctuating charge force fields–application to liquid water. J. Chem. Phys. 101: 6141 ‐ 6156.
dc.identifier.citedreferenceRyckaert, J.P., Ciccotti, G., and Berendsen, H.J.C. 1977. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n‐alkanes. J. Comp. Phys. 23: 327 ‐ 341.
dc.identifier.citedreferenceSaunders, M., Houk, K.N., Wu, Y.‐D., Still, W.C., Lipton, M., Chong, G., and Guida, W.C. 1990. Conformations of cycloheptadecane. A comparison of methods for conformational searching. J. Am. Chem. Soc. 112: 1419 ‐ 1427.
dc.identifier.citedreferenceSchlick, T. and Overton, M. 1987. A powerful truncated Newton method for potential energy minimization. J. Comp. Chem. 8: 1025 ‐ 1039.
dc.identifier.citedreferenceSimmerling, C., Miller, J.L., and Kollman, P.A. 1998. Combined locally enhanced sampling and particle mesh Ewald as a strategy to locate the experimental structure of a non‐helical nucleic acid. J. Am. Chem. Soc. 120: 7149 ‐ 7155.
dc.identifier.citedreferenceStanton, R.V., Little, L.R., and Merz, K.M. 1995. An examination of a Hartree‐Fock molecular mechanical coupled potential. J. Phys. Chem. 99: 17344 ‐ 17348.
dc.identifier.citedreferenceSteinbach, P.J. and Brooks, B.R. 1994. Protein simulation below the glass‐transition temperature. Dependence on cooling protocol. Chem. Phys. Lett. 226: 447 ‐ 452.
dc.identifier.citedreferenceStewart, J.J.P. 1990. Semiempirical molecular orbital methods. In Reviews in Computational Chemistry ( K.B. Lipkowitz and D.B. Boyd, eds.)pp. 45 ‐ 81. VCH, New York.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.