Show simple item record

Cholinergic innervation of principal neurons in the cochlear nucleus of the Mongolian gerbil

dc.contributor.authorGillet, Charlène
dc.contributor.authorGoyer, David
dc.contributor.authorKurth, Stefanie
dc.contributor.authorGriebel, Hannah
dc.contributor.authorKuenzel, Thomas
dc.date.accessioned2018-05-15T20:14:30Z
dc.date.available2019-09-04T20:15:38Zen
dc.date.issued2018-07-01
dc.identifier.citationGillet, Charlène ; Goyer, David; Kurth, Stefanie; Griebel, Hannah; Kuenzel, Thomas (2018). "Cholinergic innervation of principal neurons in the cochlear nucleus of the Mongolian gerbil." Journal of Comparative Neurology 526(10): 1647-1661.
dc.identifier.issn0021-9967
dc.identifier.issn1096-9861
dc.identifier.urihttps://hdl.handle.net/2027.42/143700
dc.description.abstractPrincipal neurons in the ventral cochlear nucleus (VCN) receive powerful ascending excitation and pass on the auditory information with exquisite temporal fidelity. Despite being dominated by ascending inputs, the VCN also receives descending cholinergic connections from olivocochlear neurons and from higher regions in the pontomesencephalic tegmentum. In Mongolian gerbils, acetylcholine acts as an excitatory and modulatory neurotransmitter on VCN neurons, but the anatomical structure of cholinergic innervation of gerbil VCN is not well described. We applied fluorescent immunohistochemical staining to elucidate the development and the cellular localization of presynaptic and postsynaptic components of the cholinergic system in the VCN of the Mongolian gerbil. We found that cholinergic fibers (stained with antibodies against the vesicular acetylcholine transporter) were present before hearing onset at P5, but innervation density increased in animals after P10. Early in development cholinergic fibers invaded the VCN from the medial side, spread along the perimeter and finally innervated all parts of the nucleus only after the onset of hearing. Cholinergic fibers ran in a rostro‐caudal direction within the nucleus and formed en‐passant swellings in the neuropil between principal neurons. Nicotinic and muscarinic receptors were expressed differentially in the VCN, with nicotinic receptors being mostly expressed in dendritic areas while muscarinic receptors were located predominantly in somatic membranes. These anatomical data support physiological indications that cholinergic innervation plays a role in modulating information processing in the cochlear nucleus.Using fluorescent staining techniques, the authors show that cholinergic axons innervate mainly dendritic areas of time‐coding neurons in the cochlear nucleus of hearing Mongolian gerbils. This study elucidates the anatomical basis of descending modulatory connectivity of a lower sensory brain area.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherRRID:AB_2080193
dc.subject.otherRRID:AB_2039997
dc.subject.otherRRID:AB_2315385
dc.subject.otheracetylcholine
dc.subject.othercochlear nucleus
dc.subject.otherolivocochlear system
dc.subject.otherendbulb of held
dc.subject.otherspherical bushy cells
dc.subject.otherRRID:AB_887864
dc.subject.otherRRID:AB_2079760
dc.subject.otherRRID:AB_90764
dc.titleCholinergic innervation of principal neurons in the cochlear nucleus of the Mongolian gerbil
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143700/1/cne24433.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143700/2/cne24433_am.pdf
dc.identifier.doi10.1002/cne.24433
dc.identifier.sourceJournal of Comparative Neurology
dc.identifier.citedreferenceMulders, W. H. A. M., Paolini, A. G., Needham, K., & Robertson, D. ( 2003 ). Olivocochlear collaterals evoke excitatory effects in onset neurones of the rat cochlear nucleus. Hearing Research, 176, 113 – 121.
dc.identifier.citedreferenceKo, K. W., Rasband, M. N., Meseguer, V., Kramer, R. H., & Golding, N. L. ( 2016 ). Serotonin modulates spike probability in the axon initial segment through HCN channels. Nature Neuroscience, 19, 826 – 834.
dc.identifier.citedreferenceKőszeghy, Á., Vincze, J., Rusznák, Z., Fu, Y., Paxinos, G., Csernoch, L., & Szücs, G. ( 2012 ). Activation of muscarinic receptors increases the activity of the granule neurones of the rat dorsal cochlear nucleus–a calcium imaging study. Pflugers Archiv, 463, 829 – 844.
dc.identifier.citedreferenceKuenzel, T., Borst, J. G. G., & van der Heijden, M. ( 2011 ). Factors controlling the input‐output relationship of spherical bushy cells in the gerbil cochlear nucleus. Journal of Neuroscience, 31, 4260 – 4273.
dc.identifier.citedreferenceKuenzel, T., Nerlich, J., Wagner, H., Rübsamen, R., & Milenkovic, I. ( 2015 ). Inhibitory properties underlying non‐monotonic input‐output relationship in low‐frequency spherical bushy neurons of the gerbil. Frontiers in Neural Circuits, 9, 1 – 14.
dc.identifier.citedreferenceKünzel, T., & Wagner, H. ( 2017 ). Cholinergic top‐down influences on the auditory brainstem. e‐Neuroforum, 23, 35 – 44.
dc.identifier.citedreferenceKopp‐Scheinpflug, C., Dehmel, S., Dörrscheidt, G. J., & Rübsamen, R. ( 2002 ). Interaction of excitation and inhibition in anteroventral cochlear nucleus neurons that receive large endbulb synaptic endings. The Journal of Neuroscience, 22, 11004 – 11018.
dc.identifier.citedreferenceLimb, C. J., & Ryugo, D. K. ( 2000 ). Development of primary axosomatic endings in the anteroventral cochlear nucleus of mice. Journal of the Association for Research in Otolaryngology, 1, 103 – 119.
dc.identifier.citedreferenceManzoor, N. F., Chen, G., & Kaltenbach, J. A. ( 2013 ). Suppression of noise‐induced hyperactivity in the dorsal cochlear nucleus following application of the cholinergic agonist carbachol. Brain Research, 1523, 28 – 36.
dc.identifier.citedreferenceMellott, J. G., Motts, S. D., & Schofield, B. R. ( 2011 ). Multiple origins of cholinergic innervation of the cochlear nucleus. Neuroscience, 180, 138 – 147.
dc.identifier.citedreferenceMulders, W. H. A. M., Winter, I. M., & Robertson, D. ( 2002 ). Dual action of olivocochlear collaterals in the guinea pig cochlear nucleus. Hearing Research, 174, 264 – 280.
dc.identifier.citedreferenceMulders, W. H. A. M., Seluakumaran, K., & Robertson, D. ( 2008 ). Effects of centrifugal pathways on responses of cochlear nucleus neurons to signals in noise. European Journal of Neuroscience, 27, 702 – 714.
dc.identifier.citedreferenceMulders, W. H. A. M., Paolini, A. G., Needham, K., & Robertson, D. ( 2009 ). Synaptic responses in cochlear nucleus neurons evoked by activation of the olivocochlear system. Hearing Research, 256, 85 – 92.
dc.identifier.citedreferenceNerlich, J., Kuenzel, T., Keine, C., Korenic, A., Rübsamen, R., & Milenkovic, I. ( 2014 ). Dynamic fidelity control to the central auditory system: Synergistic glycine/GABAergic inhibition in the cochlear nucleus. The Journal of Neuroscience, 34, 11604 – 11620.
dc.identifier.citedreferenceNordeen, K. W., Killackey, H. P., & Kitzes, L. M. ( 1983 ). Ascending auditory projections to the inferior colliculus in the adult gerbil, Meriones unguiculatus. The Journal of Comparative Neurology, 214, 131 – 143.
dc.identifier.citedreferenceOertel, D. ( 1983 ). Synaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus. The Journal of Neuroscience, 3, 2043 – 2053.
dc.identifier.citedreferencePál, B., Koszeghy, A., Pap, P., Bakondi, G., Pocsai, K., Szucs, G., & Rusznák, Z. ( 2009 ). Targets, receptors and effects of muscarinic neuromodulation on giant neurones of the rat dorsal cochlear nucleus. The European Journal of Neuroscience, 30, 769 – 782.
dc.identifier.citedreferenceRyan, A. F., Keithley, E. M., Wang, Z. X., & Schwartz, I. R. ( 1990 ). Collaterals from lateral and medial olivocochlear efferent neurons innervate different regions of the cochlear nucleus and adjacent brainstem. The Journal of Comparative Neurology, 300, 572 – 582.
dc.identifier.citedreferenceRyugo, D. K., Haenggeli, C.‐A., & Doucet, J. R. ( 2003 ). Multimodal inputs to the granule cell domain of the cochlear nucleus. Experimental Brain Research, 153, 477 – 485.
dc.identifier.citedreferenceRyugo, D., & Parks, T. N. ( 2003 ). Primary innervation of the avian and mammalian cochlear nucleus. Brain Research Bulletin, 60, 435 – 456.
dc.identifier.citedreferenceSarter, M., Parikh, V., & Howe, W. M. ( 2009 ). Opinion: Phasic acetylcholine release and the volume transmission hypothesis: Time to move on. Nature Reviews Neuroscience, 10, 383 – 390.
dc.identifier.citedreferenceSchofield, B. R., Motts, S. D., & Mellott, J. G. ( 2011 ). Cholinergic cells of the pontomesencephalic tegmentum: Connections with auditory structures from cochlear nucleus to cortex. Hearing Research, 279, 85 – 95.
dc.identifier.citedreferenceSherriff, F. E., & Henderson, Z. ( 1994 ). Cholinergic neurons in the ventral trapezoid nucleus project to the cochlear nuclei in the rat. Neuroscience, 58, 627 – 633.
dc.identifier.citedreferenceSmith, D. I., & Kraus, N. ( 1987 ). Postnatal development of the auditory brainstem response (ABR) in the unanesthetized gerbil. Hearing Research, 27, 157 – 164.
dc.identifier.citedreferenceStefanescu, R. A., & Shore, S. E. ( 2016 ). Muscarinic acetylcholine receptors control baseline activity and Hebbian stimulus‐timing dependent plasticity in fusiform cells of the dorsal cochlear nucleus. Journal of Neurophysiology, 117, 1229 – 1238.
dc.identifier.citedreferenceWickesberg, R. E., & Oertel, D. ( 1988 ). Tonotopic projection from the dorsal to the anteroventral cochlear nucleus of mice. The Journal of Comparative Neurology, 268, 389 – 399.
dc.identifier.citedreferenceWoolf, N. K., & Ryan, A. F. ( 1985 ). Ontogeny of neural discharge patterns in the ventral cochlear nucleus of the mongolian gerbil. Brain Research, 349, 131 – 147.
dc.identifier.citedreferenceYao, W., & Godfrey, D. A. ( 1995 ). Immunohistochemistry of muscarinic acetylcholine receptors in rat cochlear nucleus. Hearing Research, 89, 76 – 85.
dc.identifier.citedreferenceZhao, Y., & Tzounopoulos, T. ( 2011 ). Physiological activation of cholinergic inputs controls associative synaptic plasticity via modulation of endocannabinoid signaling. The Journal of Neuroscience, 31, 3158 – 3168.
dc.identifier.citedreferenceAdams, J. C. ( 1979 ). Ascending projections to the inferior colliculus. The Journal of Comparative Neurology, 183, 514 – 538.
dc.identifier.citedreferenceArvidsson, U., Riedl, M., Elde, R., & Meister, B. ( 1997 ). Vesicular acetylcholine transporter (VAChT) protein: A novel and unique marker for cholinergic neurons in the central and peripheral nervous systems. The Journal of Comparative Neurology, 378, 454 – 467.
dc.identifier.citedreferenceBaashar, A., Robertson, D., & Mulders, W. H. A. M. ( 2015 ). A novel method for selectively labelling olivocochlear collaterals in the rat. Hearing Research, 325, 35 – 41.
dc.identifier.citedreferenceBazwinsky, I., Härtig, W., & Rübsamen, R. ( 2008 ). Characterization of cochlear nucleus principal cells of Meriones unguiculatus and Monodelphis domestica by use of calcium‐binding protein immunolabeling. Journal of Chemical Neuroanatomy, 35, 158 – 174.
dc.identifier.citedreferenceBehrens, E. G., Schofield, B. R., & Thompson, A. M. ( 2002 ). Aminergic projections to cochlear nucleus via descending auditory pathways. Brain Research, 955, 34 – 44.
dc.identifier.citedreferenceBrown, M. C., & Vetter, D. E. ( 2009 ). Olivocochlear neuron central anatomy is normal in alpha9 knockout mice. Journal of the Association for Research in Otolaryngology, 10, 64 – 75.
dc.identifier.citedreferenceCampagnola, L., & Manis, P. B. ( 2014 ). A map of functional synaptic connectivity in the mouse anteroventral cochlear nucleus. The Journal of Neuroscience, 34, 2214 – 2230.
dc.identifier.citedreferenceCant, N. B., & Casseday, J. H. ( 1986 ). Projections from the anteroventral cochlear nucleus to the lateral and medial superior olivary nuclei. The Journal of Comparative Neurology, 247, 457 – 476.
dc.identifier.citedreferenceCao, X.‐J., & Oertel, D. ( 2010 ). Auditory nerve fibers excite targets through synapses that vary in convergence, strength, and short‐term plasticity. Journal of Neurophysiology, 104, 2308 – 2320.
dc.identifier.citedreferenceCaspary, D., Havey, D., & Faingold, C. ( 1983 ). Effects of acetylcholine on cochlear nucleus neurons. Experimental Neurology, 498, 491 – 498.
dc.identifier.citedreferenceChen, K., Waller, H. J., & Godfrey, D. A. ( 1994 ). Cholinergic modulation of spontaneous activity in rat dorsal cochlear nucleus. Hearing Research, 77, 168 – 176.
dc.identifier.citedreferenceChen, K., Waller, H. J., & Godfrey, D. A. ( 1995 ). Muscarinic receptor subtypes in rat dorsal cochlear nucleus. Hearing Research, 89, 137 – 145.
dc.identifier.citedreferenceComis, S. D., & Davies, E. W. ( 1969 ). Acetylcholine as a transmitter in the cat auditory system. Journal of Neurochemistry, 16, 423 – 429.
dc.identifier.citedreferenceFelmy, F., & Künzel, T. ( 2014 ). Giant synapses in the central auditory system. e‐Neuroforum, 5, 53 – 59.
dc.identifier.citedreferenceFujino, K., & Oertel, D. ( 2001 ). Cholinergic modulation of stellate cells in the mammalian ventral cochlear nucleus. The Journal of Neuroscience, 21, 7372 – 7383.
dc.identifier.citedreferenceGrothe, B., Pecka, M., & McAlpine, D. ( 2010 ). Mechanisms of sound localization in mammals. Physiological Reviews, 90, 983 – 1012.
dc.identifier.citedreferenceGrothe, B., & Pecka, M. ( 2014 ). The natural history of sound localization in mammals – a story of neuronal inhibition. Frontiers in Neural Circuits, 8, 1 – 19.
dc.identifier.citedreferenceGómez‐Nieto, R., & Rubio, M. E. ( 2009 ). A bushy cell network in the rat ventral cochlear nucleus. The Journal of Comparative Neurology, 516, 241 – 263.
dc.identifier.citedreferenceGoyer, D., Fensky, L., Hilverling, A. M., Kurth, S., & Kuenzel, T. ( 2015 ). Expression of the postsynaptic scaffold PSD‐95 and development of synaptic physiology during giant terminal formation in the auditory brainstem of the chicken. The European Journal of Neuroscience, 41, 1416 – 1429.
dc.identifier.citedreferenceGoyer, D., Kurth, S., Gillet, C., Keine, C., Rübsamen, R., & Kuenzel, T. ( 2016 ). Slow cholinergic modulation of spike probability in ultra‐fast time‐coding sensory neurons. eNeuro, 3, ENEURO.0186‐16.2016.
dc.identifier.citedreferenceGuinan, J. J. ( 2006 ). Olivocochlear efferents: Anatomy, physiology, function, and the measurement of efferent effects in humans. Ear and Hearing, 27, 589 – 607.
dc.identifier.citedreferenceHappe, H. K., & Morley, B. J. ( 1998 ). Nicotinic acetylcholine receptors in rat cochlear nucleus: [125I]‐alpha‐bungarotoxin receptor autoradiography and in situ hybridization of alpha 7 nAChR subunit mRNA. The Journal of Comparative Neurology, 397, 163 – 180.
dc.identifier.citedreferenceHarrington, A. M., Peck, C. J., Liu, L., Burcher, E., Hutson, J. M., & Southwell, B. R. ( 2010 ). Localization of muscarinic receptors M1R, M2R and M3R in the human colon. Neurogastroenterology and Motility: The Official Journal of the European Gastrointestinal Motility Society, 22, 999 – 1008.
dc.identifier.citedreferenceHe, S., Wang, Y.‐X., Petralia, R. S., & Brenowitz, S. D. ( 2014 ). Cholinergic modulation of large‐conductance calcium‐activated potassium channels regulates synaptic strength and spine calcium in cartwheel cells of the dorsal cochlear nucleus. The Journal of Neuroscience, 34, 5261 – 5272.
dc.identifier.citedreferenceHeld, H. ( 1893 ). Die centrale Gehörleitung. Arch für Anatomie und Physiologie, A3 + 4, 201 – 248.
dc.identifier.citedreferenceHorváth, M., Kraus, K. S., & Illing, R. B. ( 2000 ). Olivocochlear neurons sending axon collaterals into the ventral cochlear nucleus of the rat. Journal of Comparative Neurology, 422, 95 – 105.
dc.identifier.citedreferenceIrie, T., Fukui, I., & Ohmori, H. ( 2006 ). Activation of GIRK channels by muscarinic receptors and group II metabotropic glutamate receptors suppresses Golgi cell activity in the cochlear nucleus of mice. Journal of Neurophysiology, 96, 2633 – 2644.
dc.identifier.citedreferenceKawase, T., & Liberman, M. C. ( 1993 ). Antimasking effects of the olivocochlear reflex. I. Enhancement of compound action potentials to masked tones. Journal of Neurophysiology, 70, 2519 – 2532.
dc.identifier.citedreferenceKawase, T., Delgutte, B., & Liberman, M. C. ( 1993 ). Antimasking effects of the olivocochlear reflex. II. Enhancement of auditory‐nerve response to masked tones. Journal of Neurophysiology, 70, 2533 – 2549.
dc.identifier.citedreferenceKeine, C., & Rübsamen, R. ( 2015 ). Inhibition Shapes Acoustic Responsiveness in Spherical Bushy Cells. Journal of Neuroscience, 35, 8579 – 8592.
dc.identifier.citedreferenceKeine, C., Rübsamen, R., & Englitz, B. ( 2016 ). Inhibition in the auditory brainstem enhances signal representation and regulates gain in complex acoustic environments. Elife, 5, 1 – 33.
dc.identifier.citedreferenceKishan, A. U., Lee, C. C., & Winer, J. A. ( 2011 ). Patterns of olivocochlear axonal branches. Open Journal of Neuroscience, 1, 145 – 149.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.