Show simple item record

Strong variation in weathering of layered rock maintains hillslope‐scale strength under high precipitation

dc.contributor.authorVon Voigtlander, Jennifer
dc.contributor.authorClark, Marin K.
dc.contributor.authorZekkos, Dimitrios
dc.contributor.authorGreenwood, William W.
dc.contributor.authorAnderson, Suzanne P.
dc.contributor.authorAnderson, Robert S.
dc.contributor.authorGodt, Jonathan W.
dc.date.accessioned2018-05-15T20:14:31Z
dc.date.available2019-07-01T14:52:17Zen
dc.date.issued2018-05
dc.identifier.citationVon Voigtlander, Jennifer; Clark, Marin K.; Zekkos, Dimitrios; Greenwood, William W.; Anderson, Suzanne P.; Anderson, Robert S.; Godt, Jonathan W. (2018). "Strong variation in weathering of layered rock maintains hillslope‐scale strength under high precipitation." Earth Surface Processes and Landforms 43(6): 1183-1194.
dc.identifier.issn0197-9337
dc.identifier.issn1096-9837
dc.identifier.urihttps://hdl.handle.net/2027.42/143701
dc.description.abstractThe evolution of volcanic landscapes and their landslide potential are both dependent upon the weathering of layered volcanic rock sequences. We characterize critical zone structure using shallow seismic Vp and Vs profiles and vertical exposures of rock across a basaltic climosequence on Kohala peninsula, Hawai’i, and exploit the dramatic gradient in mean annual precipitation (MAP) across the peninsula as a proxy for weathering intensity. Seismic velocity increases rapidly with depth and the velocity–depth gradient is uniform across three sites with 500–600 mm/yr MAP, where the transition to unaltered bedrock occurs at a depth of 4 to 10 m. In contrast, velocity increases with depth less rapidly at wetter sites, but this gradient remains constant across increasing MAP from 1000 to 3000 mm/yr and the transition to unaltered bedrock is near the maximum depth of investigation (15–25 m). In detail, the profiles of seismic velocity and of weathering at wet sites are nowhere monotonic functions of depth. The uniform average velocity gradient and the greater depths of low velocities may be explained by the averaging of velocities over intercalated highly weathered sites with less weathered layers at sites where MAP > 1000 mm/yr. Hence, the main effect of climate is not the progressive deepening of a near‐surface altered layer, but rather the rapid weathering of high permeability zones within rock subjected to precipitation greater than ~1000 mm/yr. Although weathering suggests mechanical weakening, the nearly horizontal orientation of alternating weathered and unweathered horizons with respect to topography also plays a role in the slope stability of these heterogeneous rock masses. We speculate that where steep, rapidly evolving hillslopes exist, the sub‐horizontal orientation of weak/strong horizons allows such sites to remain nearly as strong as their less weathered counterparts at drier sites, as is exemplified by the 50°–60° slopes maintained in the amphitheater canyons on the northwest flank of the island. Copyright © 2017 John Wiley & Sons, Ltd.Seismic velocity profiles across a basalt climosequence in Hawai’i reveal that above a particular precipitation threshold, rapid weathering of high‐permeability layers produces intercalated low‐velocity horizons and dramatically lowers the average seismic velocity of the rock section. However, less permeable layers remain relatively unweathered and thus still contribute significantly to the mechanical competence of the profile, which may explain maintenance of steep‐walled canyons under high precipitation rates. Such observations challenge a top‐down model of progressive weathering (i.e. weakening) of the substrate and therefore suggest that high strength can be maintained even under high precipitation rates, if horizontally layered horizons of different weathering potential exist.
dc.publisherWiley Periodicals, Inc.
dc.publisherCambridge University Press
dc.subject.otherbasalt weathering
dc.subject.othercritical zone
dc.subject.otherregolith formation
dc.subject.othershallow seismic profiles
dc.subject.otherslope stability
dc.subject.otherHawai’i
dc.titleStrong variation in weathering of layered rock maintains hillslope‐scale strength under high precipitation
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeology and Earth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143701/1/esp4290.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143701/2/esp4290_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143701/3/esp4290-sup-0001-SupplementaFiles_FINAL.pdf
dc.identifier.doi10.1002/esp.4290
dc.identifier.sourceEarth Surface Processes and Landforms
dc.identifier.citedreferencePorter SC. 2005. Pleistocene snowlines and glaciation of the Hawaiian Islands. Quaternary International 138–139: 118 – 128. https://doi.org/10.1016/j.quaint.2005.02.009.
dc.identifier.citedreferenceOki DS, Gingerich SB, Whitehead RL. 1999. Hawaii. In   Ground Water Atlas of the United States, Segment 13, Alaska, Hawaii, Puerto Rico, and the US Virgin Islands: US Geological Survey Hydrologic Investigations Atlas. USGS Office of Groundwater: Reston, VA 730‐N, N12–N22, N36.
dc.identifier.citedreferenceOYO Corporation. 2006.   SeisImager/2D manual, Version 3.2. ftp://geom.geometrics.com/pub/seismic/SeisImager/Intallation_CD/SeisImager2D_Manu al/ [2015].
dc.identifier.citedreferencePark CB, Miller RD, Xia J. 1998. Imaging dispersion curves of surface waves on multi‐channel record. In Expanded Abstracts: 68th Annual International Meeting, Society of Exploration Geophysicists, 1377 – 1380.
dc.identifier.citedreferencePark CB, Miller RD, Xia J. 1999. Multichannel analysis of surface waves. Geophysics 64 ( 3 ): 800 – 808.
dc.identifier.citedreferenceParsekian AD, Singha K, Minsley BJ, Holbrook WS, Slater L. 2015. Multiscale geophysical imaging of the critical zone. Reviews of Geophysics 53: 1 – 26. https://doi.org/10.1002/2014RG000465.
dc.identifier.citedreferencePelekis PC, Athanasopoulos GA. 2011. An overview of surface wave methods and a reliability study of a simplified inversion technique. Soil Dynamics and Earthquake Engineering 31 ( 12 ): 1654 – 1668.
dc.identifier.citedreferencePorder S, Hilley GE, Chadwick OA. 2007. Chemical weathering, mass loss, and dust inputs across a climate by time matrix in the Hawaiian Islands. Earth and Planetary Science Letters 258 ( 3 ): 414 – 427.
dc.identifier.citedreferenceRahardjo H, Aung KK, Leong EC, Rezaur RB. 2004. Characteristics of residual soils in Singapore as formed by weathering. Engineering Geology 73 ( 1 ): 157 – 169. https://doi.org/10.1016/j.enggeo.2004.01.002.
dc.identifier.citedreferenceRiebe CS, Hahm WJ, Brantley SL. 2017. Controls on deep critical zone architecture: a historical review and four testable hypotheses. Earth Surface Processes and Landforms 42 ( 1 ): 128 – 156. https://doi.org/10.1002/esp.4052.
dc.identifier.citedreferenceRempe DM, Dietrich WE. 2014. A bottom‐up control on fresh‐bedrock topography under landscapes. Proceedings of the National Academy of Sciences 111 ( 18 ): 6576 – 6581. https://doi.org/10.1073/pnas.1404763111.
dc.identifier.citedreferenceRitter D, Kochel CR, Miller JR. 2011.   Process Geomorphology, Fifth edn. New York: McGraw Hill.
dc.identifier.citedreferenceSarno A, Farah R, Hudyma N, Hiltunen DR. 2010. Relationships between Compression Wave Velocity and Unconfined Compression Strength for Weathered Florida Limestone. In GeoFlorida 2010 Advances in Analysis, Modeling and Design. ASCE: Reston, VA; 950 – 959.
dc.identifier.citedreferenceSelby MJ. 1980. A rock mass strength classification for geomorphic purposes: with tests from Antarctica and New Zealand. Zeitschrift für Geomorphologie 24: 31 – 51.
dc.identifier.citedreferenceStanchits S, Vinciguerra S, Dresen G. 2006. Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite. Pure and Applied Geophysics 163 ( 5–6 ): 975 – 994.
dc.identifier.citedreferenceSt Clair J, Moon S, Holbrook WS, Perron JT, Riebe CS, Martel SJ, Carr B, Harman C, Singha K, Richter D d B. 2015. Geophysical imaging reveals topographic stress control of bedrock weathering. Science 350: 534 – 538. https://doi.org/10.1126/science.aab2210.
dc.identifier.citedreferenceStokoe KH, II, Wright SG, Bay JA, Roesset JM. 1994. Characterization of geotechnical sites by SASW method. In   Geophysical Characterization of Sites, Woods RD (ed). International Science: New York; 15 – 26.
dc.identifier.citedreferenceStokoe KH, Santamarina JC. 2000. Seismic‐wave‐based testing in geotechnical engineering. Proceedings of the International Society for Rock Mechanics.
dc.identifier.citedreferenceTugrul A, Zarif IH. 2000. The influence of weathering on the geological and geomechanical characteristics of a sandstone in Istanbul, Turkey. Environmental and Engineering Geoscience 6 ( 4 ): 403 – 412.
dc.identifier.citedreferenceTziallas GP, Saroglou H, Tsiambaos G. 2013. Determination of mechanical properties of flysch using laboratory methods. Engineering Geology 166: 81 – 89.
dc.identifier.citedreferenceWest AJ, Galy A, Bickle M. 2005. Tectonic and climatic controls on silicate weathering. Earth and Planetary Science Letters 235 ( 1 ): 211 – 228.
dc.identifier.citedreferenceWolfe EW, Morris J. 1996. Geologic map of the Island of Hawaii. Miscellaneous investigations series map I‐2524‐A. US Geological Survey: Reston.
dc.identifier.citedreferenceWong IG, Stokoe KH, Cox BR, Yuan J, Knudsen KL, Terra F, Okubo P, Lin YC. 2011. Shear‐wave velocity characterization of the USGS Hawaiian strong‐motion network on the island of Hawaii and development of an NEHRP site‐class map. Bulletin of the Seismological Society of America 101 ( 5 ): 2252 – 2269.
dc.identifier.citedreferenceXia J, Miller RD, Park CB, Ivanov J. 2000. Construction of 2‐D vertical shear‐wave velocity field by the multichannel analysis of surface waves technique. Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, Arlington, VA, 20–24 February; 1197–1206.
dc.identifier.citedreferenceXia J, Miller RD, Park CB, Tian G. 2003. Inversion of high frequency surface waves with fundamental and higher modes. Journal of Applied Geophysics 52: 45 – 57.
dc.identifier.citedreferenceYoon S, Rix JG. 2009. Near‐field effects on array‐based surface wave methods with active sources. Journal of Geotechnical and Geoenvironmental Engineering 135 ( 3 ): 399 – 406.
dc.identifier.citedreferenceZekkos D, Cohen‐Waeber J, Medley E, Jesionek K. 2008. Characterization of weak rock mass and geoengineering analyses for a canyon landfill in northern California. Paper #6.05a. Proceedings of the 6th International Conference on Case Histories in Geotechnical Engineering, Arlington, VA, 11–16 August 2007.
dc.identifier.citedreferenceAdam L, Otheim T. 2013. Elastic laboratory measurements and modeling of saturated basalts. Journal of Geophysical Research, Solid Earth 118: 1 – 12. https://doi.org/10.1002/jgrb.50090.
dc.identifier.citedreferenceAl‐Harthi AA, Al‐Amri RM, Shehata WM. 1999. The porosity and engineering properties of vesicular basalt in Saudi Arabia. Engineering Geology 54 ( 3 ): 313 – 320. https://doi.org/10.1016/S0013‐7952(99)00050‐2.
dc.identifier.citedreferenceAnderson RS, Anderson SP. 2010.   Geomorphology: The Mechanics and Chemistry of Landscapes. Cambridge University Press: Cambridge.
dc.identifier.citedreferenceAnderson RS, Anderson SP, Tucker GE. 2013. Rock damage and regolith transport by frost: an example of climate modulation of the geomorphology of the critical zone. Earth Surface Processes and Landforms 38: 299 – 316. https://doi.org/10.1002/esp.3330.
dc.identifier.citedreferenceAnderson SP, von Blanckenburg F, White AF. 2007. Physical and chemical controls on the critical zone. Elements 3: 315 – 319.
dc.identifier.citedreferenceBarton N. 2007.   Rock Quality, Seismic Velocity, Attenuation and Anisotropy. CRC Press: Boca Raton, FL.
dc.identifier.citedreferenceBefus KM, Sheehan AF, Leopold M, Anderson SP, Anderson RS. 2011. Seismic constraints on critical zone architecture, Boulder Creek Watershed, Colorado. Vadose Zone Processes 10 ( 3 ): 915 – 927. https://doi.org/10.2136/vzj2010.0108.
dc.identifier.citedreferenceBrantley SL, Goldhaber MB, Ragnarsdottir KV. 2007. Crossing disciplines and scales to understand the critical zone. Elements 3 ( 5 ): 307 – 314.
dc.identifier.citedreferenceBrantley SL, White AF. 2009. Approaches to modeling weathered regolith. Reviews in Mineralogy and Geochemistry 70 ( 1 ): 435 – 484. https://doi.org/10.2138/rmg.2009.70.10.
dc.identifier.citedreferenceBrantley SL, Lebedeva M. 2011. Learning to read the chemistry of regolith to understand the critical zone. Annual Review of Earth and Planetary Sciences 39: 387 – 416. https://doi.org/10.1146/annurev-earth%20040809-152321.
dc.identifier.citedreferenceBurger HR, Sheehan AF, Jones CH. 2006.   Introduction to Applied Geophysics: Exploring the Shallow Subsurface. WW Norton: New York.
dc.identifier.citedreferenceBursztyn N, Pederson JL, Tressler C, Mackley RD, Mitchell KJ. 2015. Rock strength along a fluvial transect of the Colorado Plateau – quantifying a fundamental control on geomorphology. Earth and Planetary Science Letters 429: 90 – 100. https://doi.org/10.1016/j.epsl.2015.07.042.
dc.identifier.citedreferenceCerney B, Carlson RL. 1999. The effect of cracks on the seismic velocities of basalt from site 990, southeast Greenland margin. In Proceedings of the Ocean Drilling Program. Scientific Results 163: 29 – 35.
dc.identifier.citedreferenceClarke BA, Burbank DW. 2011. Quantifying bedrock‐fracture patterns within the shallow subsurface: implications for rock mass strength, bedrock landslides, and erodability. Journal of Geophysical Research 116: F04009. https://doi.org/10.1029/2011JF001987.
dc.identifier.citedreferenceChadwick OA, Gavenda RT, Kelly EF, Ziegler D, Olson CG, Elliott WC, Hendricks DM. 2003. The impact of climate on the biogeochemical functioning of volcanic soils. Chemical Geology 202: 193 – 221.
dc.identifier.citedreferenceDixon JL, Heimsath AM, Amundson R. 2009. The critical role of climate and saprolite weathering in landscape evolution. Earth Surface Processes and Landforms 34 ( 11 ): 1507 – 1521.
dc.identifier.citedreferenceDixon JL, Hartshorn AS, Heimsath AM, DiBiase RA, Whipple KX. 2012. Chemical weathering response to tectonic forcing: a soils perspective from the San Gabriel Mountains, California. Earth and Planetary Science Letters 323: 40 – 49.
dc.identifier.citedreferenceDuffaut P. 1981. Structural weaknesses in rocks and rock masses: tentative classification and behaviour. In Proceedings of the International Society for Rock Mechanics.
dc.identifier.citedreferenceDuffy B, Campbell J, Finnemore M, Gomez C. 2014. Defining fault avoidance zones and Associated geotechnical properties using MASW: a case study on the Springfield Fault, New Zealand. Engineering Geology 183: 216 – 229.
dc.identifier.citedreferenceFerrier KL, Kirchner JW. 2008. Effects of physical erosion on chemical denudation rates: a numerical modeling study of soil‐mantled hillslopes. Earth and Planetary Science Letters 272 ( 3 ): 591 – 599.
dc.identifier.citedreferenceFoti S, Comina C, Boiero D, Socco LV. 2009. Non‐uniqueness in surface‐wave inversion and consequences on seismic site response analyses. Soil Dynamics and Earthquake Engineering 29 ( 6 ): 982 – 993.
dc.identifier.citedreferenceGiambelluca TW, Chen Q, Frazier AG, Price JP, Chen YL, Chu PS, Eischeid JK, Delparte DM. 2013. Online rainfall atlas of Hawai’i. Bulletin of the American Meteorological Society 94 ( 3 ): 313 – 316.
dc.identifier.citedreferenceGoodfellow BW, Chadwick OA, Hilley GE. 2014. Depth and character of rock weathering across a basaltic hosted climosequence on Hawai’i. Earth Surface Processes and Landforms 39 ( 3 ): 381 – 398.
dc.identifier.citedreferenceGreenwood W, Zekkos D, Sahadewa A. 2015. Spatial variation of shear wave velocity of waste materials from surface wave measurements. Journal of Environmental and Engineering Geophysics 20 ( 4 ): 287 – 301.
dc.identifier.citedreferenceGupta AS, Rao KS. 1998. Index properties of weathered rocks: inter‐relationships and applicability. Bulletin of Engineering Geology and the Environment 57 ( 2 ): 161 – 172.
dc.identifier.citedreferenceHachinohe S, Hiraki N, Suzuki T. 1999. Rates of weathering and temporal changes in strength of bedrock of marine terraces in Boso Peninsula, Japan. Engineering Geology 55: 29 – 43.
dc.identifier.citedreferenceHan J, Gasparini NM, Johnson JP, Murphy BP. 2014. Modeling the influence of rainfall gradients on discharge, bedrock erodibility, and river profile evolution, with application to the Big Island, Hawai’i. Journal of Geophysical Research ‐ Earth Surface 119 ( 6 ): 1418 – 1440.
dc.identifier.citedreferenceHayashi K, Takahashi T. 2001. High resolution seismic refraction method using surface and borehole data for site characterization of rocks. International Journal of Rock Mechanics and Mining Sciences 38 ( 6 ): 807 – 813.
dc.identifier.citedreferenceHoek E. 1994. Strength of rock and rock masses. ISRM News Journal 2 ( 2 ): 4 – 16.
dc.identifier.citedreferenceHoek E, Brown ET. 1980. Empirical strength criterion for rock masses. Journal of Geotechnical and Geoenvironmental Engineering 106: 15715.
dc.identifier.citedreferenceHoek E, Brown ET. 1997. Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences 34 ( 8 ): 1165 – 1186.
dc.identifier.citedreferenceHolbrook SW, Riebe CS, Elwaseif M, Hayes JL, Basler‐Reeder K, Harry DL, Malazian A, Dosseto A, Hartsough PC, Hopmans JW. 2014. Geophysical constraints on deep weathering and water storage potential in the southern Sierra Critical Zone Observatory. Earth Surface Processes and Landforms 39: 366 – 380. https://doi.org/10.1002/esp.3502.
dc.identifier.citedreferenceHayashi K, Suzuki H. 2004. CMP cross‐correlation analysis of multichannel surface wave data. Exploration Geophysics 35: 7 – 13.
dc.identifier.citedreferenceKarakul H, Ulusay R. 2013. Empirical correlations for predicting strength properties of rocks from P‐wave velocity under different degrees of saturation. Rock mechanics and rock engineering 46 ( 5 ): 981 – 999.
dc.identifier.citedreferenceSpengler SR, Garcia MO. 1988. Geochemistry of the Hawi lavas, Kohala Volcano, Hawaii. Contributions to Mineralogy and Petrology 99: 90 – 104.
dc.identifier.citedreferenceLamb MP, Howard AD, Dietrich WE, Perron JT. 2007. Formation of amphitheater headed valleys by waterfall erosion after large‐scale slumping on Hawai’i. Geological Society of America Bulletin 119 ( 78 ): 805 – 822.
dc.identifier.citedreferenceLarsen IJ, Almond PC, Eger A, Stone JO, Montgomery DR, Malcolm B. 2014. Rapid soil production and weathering in the Southern Alps, New Zealand. Science 343 ( 6171 ): 637 – 640.
dc.identifier.citedreferenceLebedeva MI, Brantley SL. 2013. Exploring geochemical controls on weathering and erosion of convex hillslopes: beyond the empirical regolith production function. Earth Surface Processes and Landforms 38 ( 15 ): 1793 – 1807. https://doi.org/10.1002/esp.3424.
dc.identifier.citedreferenceMarinos P, Hoek E. 2001. Estimating the geotechnical properties of heterogeneous rock masses such as flysch. Bulletin of Engineering Geology and the Environment 60 ( 2 ): 85 – 92.
dc.identifier.citedreferenceMarinos V. 2010. New proposed GSI classification charts for weak or complex rock masses. Bulletin of the Geological Society Greece, Proceedings of the 12th International Congress, Patras, Greece, May.
dc.identifier.citedreferenceMcDougall I. 1969. Potassium–argon ages of lavas from the Hawi and Pololu Volcanic Series, Kohala Volcano, Hawaii. Geological Society of America Bulletin 80: 2597 – 2600.
dc.identifier.citedreferenceMcDougall I, Swanson DA. 1972. Potassium–argon ages of lavas from the Hawi and Pololu Volcanic Series, Kohala Volcano, Hawaii. Geological Society of America Bulletin 83: 3731 – 3738.
dc.identifier.citedreferenceMohamed Z, Mohamed K, Gye CC. 2008. Uniaxial compressive strength of composite rock material with respect to shale thickness ratio and moisture content. Electronic Journal of Geotechnical Engineering 13: 1 – 10.
dc.identifier.citedreferenceMolnar P, Anderson RS, Anderson SP. 2007. Tectonics, fracturing of rock, and erosion. Journal of Geophysical Research ‐ Earth Surface 112 ( F3 ): F03014.
dc.identifier.citedreferenceMoon V, Jayawardane J. 2004. Geomechanical and geochemical changes during early stages of weathering of Karamu Basalt, New Zealand. Engineering Geology 74: 57 – 72. https://doi.org/10.1016/j.enggeo.2004.02.002.
dc.identifier.citedreferenceMurphy BP, Johnson JPL, Gaspirini NM, Sklar LS. 2016. Chemical weathering as a mechanism for the climatic control of bedrock river incision. Nature 532: 223 – 227. https://doi.org/10.1038/nature17449.
dc.identifier.citedreferenceNational Research Council (NRC). 2001.   Basic Research Opportunities in Earth Science. National Academy Press: Washington, DC 168 pp.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.