Show simple item record

Fibroblast growth factor 2 regulates activity and gene expression of human postâ mitotic excitatory neurons

dc.contributor.authorGupta, Shweta
dc.contributor.authorM‐redmond, Tanya
dc.contributor.authorMeng, Fan
dc.contributor.authorTidball, Andrew
dc.contributor.authorAkil, Huda
dc.contributor.authorWatson, Stanley
dc.contributor.authorParent, Jack M.
dc.contributor.authorUhler, Michael
dc.date.accessioned2018-05-15T20:14:34Z
dc.date.available2019-07-01T14:52:17Zen
dc.date.issued2018-05
dc.identifier.citationGupta, Shweta; M‐redmond, Tanya ; Meng, Fan; Tidball, Andrew; Akil, Huda; Watson, Stanley; Parent, Jack M.; Uhler, Michael (2018). "Fibroblast growth factor 2 regulates activity and gene expression of human postâ mitotic excitatory neurons." Journal of Neurochemistry 145(3): 188-203.
dc.identifier.issn0022-3042
dc.identifier.issn1471-4159
dc.identifier.urihttps://hdl.handle.net/2027.42/143704
dc.description.abstractMany neuropsychiatric disorders are thought to result from subtle changes in neural circuit formation. We used human embryonic stem cells and induced pluripotent stem cells (hiPSCs) to model mature, postâ mitotic excitatory neurons and examine effects of fibroblast growth factor 2 (FGF2). FGF2 gene expression is known to be altered in brain regions of major depressive disorder (MDD) patients and FGF2 has antiâ depressive effects in animal models of depression. We generated stable inducible neurons (siNeurons) conditionally expressing human neurogeninâ 2 (NEUROG2) to generate a homogenous population of postâ mitotic excitatory neurons and study the functional as well as the transcriptional effects of FGF2. Upon induction of NEUROG2 with doxycycline, the vast majority of cells are postâ mitotic, and the gene expression profile recapitulates that of excitatory neurons within 6 days. Using hES cell lines that inducibly express NEUROG2 as well as GCaMP6f, we were able to characterize spontaneous calcium activity in these neurons and show that calcium transients increase in the presence of FGF2. The FGF2â responsive genes were determined by RNAâ Seq. FGF2â regulated genes previously identified in nonâ neuronal cell types were upâ regulated (EGR1, ETV4, SPRY4, and DUSP6) as a result of chronic FGF2 treatment of siNeurons. Novel neuronâ specific genes were also identified that may mediate FGF2â dependent increases in synaptic efficacy including NRXN3, SYT2, and GALR1. Since several of these genes have been implicated in MDD previously, these results will provide the basis for more mechanistic studies of the role of FGF2 in MDD.Alterations in fibroblast growth factor (FGF) signaling have been implicated in major depressive disorder (MDD). In this article, human stem cells are differentiated into glutamatergic neurons. FGF2 treatment of these neurons increases activity as determined using calcium imaging. RNAseq studies implicate a number of genes in this regulation of neuronal activity by FGF2 including SYT2, NRXN3, and GALR1.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherneurogeninâ 2
dc.subject.otherstem cells
dc.subject.otherFGF2
dc.subject.otherglutamatergic
dc.subject.otherneuronal
dc.titleFibroblast growth factor 2 regulates activity and gene expression of human postâ mitotic excitatory neurons
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143704/1/jnc14255-sup-0001-SupInfo.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143704/2/jnc14255-sup-0002-TableS1-S2.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143704/3/jnc14255.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143704/4/jnc14255_am.pdf
dc.identifier.doi10.1111/jnc.14255
dc.identifier.sourceJournal of Neurochemistry
dc.identifier.citedreferenceSacher J., Neumann J., Funfstuck T., Soliman A., Villringer A. and Schroeter M. L. ( 2012 ) Mapping the depressed brain: a metaâ analysis of structural and functional alterations in major depressive disorder. J. Affect. Disord. 140, 142 â 148.
dc.identifier.citedreferenceMarchetto M. C., Carromeu C., Acab A., Yu D., Yeo G. W., Mu Y., Chen G., Gage F. H. and Muotri A. R. ( 2010 ) A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143, 527 â 539.
dc.identifier.citedreferenceMason J. M., Morrison D. J., Basson M. A. and Licht J. D. ( 2006 ) Sprouty proteins: multifaceted negativeâ feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol. 16, 45 â 54.
dc.identifier.citedreferenceMasserdotti G., Gascon S. and Gotz M. ( 2016 ) Direct neuronal reprogramming: learning from and for development. Development 143, 2494 â 2510.
dc.identifier.citedreferenceMeir Y. J., Weirauch M. T., Yang H. S., Chung P. C., Yu R. K. and Wu S. C. ( 2011 ) Genomeâ wide target profiling of piggyBac and Tol2 in HEK 293: pros and cons for gene discovery and gene therapy. BMC Biotechnol. 11, 28.
dc.identifier.citedreferenceNovak G., Boukhadra J., Shaikh S. A., Kennedy J. L. and Le Foll B. ( 2009 ) Association of a polymorphism in the NRXN3 gene with the degree of smoking in schizophrenia: a preliminary study. World J. Biol. Psychiatry 10, 929 â 935.
dc.identifier.citedreferenceOkita K., Matsumura Y., Sato Y. et al. ( 2011 ) A more efficient method to generate integrationâ free human iPS cells. Nat. Methods 8, 409 â 412.
dc.identifier.citedreferenceOrnitz D. M. and Itoh N. ( 2015 ) The fibroblast growth factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 4, 215 â 266.
dc.identifier.citedreferencePalmer T. D., Ray J. and Gage F. H. ( 1995 ) FGFâ 2â responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol. Cell Neurosci. 6, 474 â 486.
dc.identifier.citedreferenceRaballo R., Rhee J., Lynâ Cook R., Leckman J. F., Schwartz M. L. and Vaccarino F. M. ( 2000 ) Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex. J. Neurosci. 20, 5012 â 5023.
dc.identifier.citedreferenceRitchie M. E., Phipson B., Wu D., Hu Y., Law C. W., Shi W. and Smyth G. K. ( 2015 ) limma powers differential expression analyses for RNAâ sequencing and microarray studies. Nucleic Acids Res. 43, e47.
dc.identifier.citedreferenceSalenave S., Chanson P., Bry H. et al. ( 2008 ) Kallmann’s syndrome: a comparison of the reproductive phenotypes in men carrying KAL1 and FGFR1/KAL2 mutations. J. Clin. Endocrinol. Metab. 93, 758 â 763.
dc.identifier.citedreferenceSalmaso N., Stevens H. E., McNeill J. et al. ( 2016 ) Fibroblast growth factor 2 modulates hypothalamic pituitary axis activity and anxiety behavior through glucocorticoid receptors. Biol. Psychiatry 80, 479 â 489.
dc.identifier.citedreferenceSarfati J., Bouvattier C., Bryâ Gauillard H., Cartes A., Bouligand J. and Young J. ( 2015 ) Kallmann syndrome with FGFR1 and KAL1 mutations detected during fetal life. Orphanet J Rare Dis 10, 71.
dc.identifier.citedreferenceSherman B. T., da Huang W., Tan Q. et al. ( 2007 ) DAVID Knowledgebase: a geneâ centered database integrating heterogeneous gene annotation resources to facilitate highâ throughput gene functional analysis. BMC Bioinformatics 8, 426.
dc.identifier.citedreferenceShi Y., Kirwan P., Smith J., Robinson H. P. and Livesey F. J. ( 2012 ) Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat. Neurosci. 15, 477 â 486, S471.
dc.identifier.citedreferenceShyn S. I., Shi J., Kraft J. B. et al. ( 2011 ) Novel loci for major depression identified by genomeâ wide association study of Sequenced Treatment Alternatives to Relieve Depression and metaâ analysis of three studies. Mol. Psychiatry 16, 202 â 215.
dc.identifier.citedreferenceTanti A. and Belzung C. ( 2010 ) Open questions in current models of antidepressant action. Br. J. Pharmacol. 159, 1187 â 1200.
dc.identifier.citedreferenceTibau E., Valencia M. and Soriano J. ( 2013 ) Identification of neuronal network properties from the spectral analysis of calcium imaging signals in neuronal cultures. Front. Neural. Circuits. 7, 199.
dc.identifier.citedreferenceTurner C. A., Gula E. L., Taylor L. P., Watson S. J. and Akil H. ( 2008 ) Antidepressantâ like effects of intracerebroventricular FGF2 in rats. Brain Res. 1224, 63 â 68.
dc.identifier.citedreferenceTurner C. A., Erenâ Kocak E., Inui E. G., Watson S. J. and Akil H. ( 2016 ) Dysregulated fibroblast growth factor (FGF) signaling in neurological and psychiatric disorders. Semin. Cell Dev. Biol. 53, 136 â 143.
dc.identifier.citedreferenceVaags A. K., Lionel A. C., Sato D. et al. ( 2012 ) Rare deletions at the neurexin 3 locus in autism spectrum disorder. Am. J. Hum. Genet. 90, 133 â 141.
dc.identifier.citedreferenceVaccarino F. M., Schwartz M. L., Raballo R., Rhee J. and Lynâ Cook R. ( 1999 ) Fibroblast growth factor signaling regulates growth and morphogenesis at multiple steps during brain development. Curr. Top. Dev. Biol. 46, 179 â 200.
dc.identifier.citedreferenceVandeleur C. L., Fassassi S., Castelao E. et al. ( 2017 ) Prevalence and correlates of DSMâ 5 major depressive and related disorders in the community. Psychiatry Res. 250, 50 â 58.
dc.identifier.citedreferenceVinothkumar S., Rastegar S., Takamiya M., Ertzer R. and Strahle U. ( 2008 ) Sequential and cooperative action of Fgfs and Shh in the zebrafish retina. Dev. Biol. 314, 200 â 214.
dc.identifier.citedreferenceZachariou V., Georgescu D., Kansal L., Merriam P. and Picciotto M. R. ( 2001 ) Galanin receptor 1 gene expression is regulated by cyclic AMP through a CREBâ dependent mechanism. J. Neurochem. 76, 191 â 200.
dc.identifier.citedreferenceZhang Y., Pak C., Han Y. et al. ( 2013 ) Rapid singleâ step induction of functional neurons from human pluripotent stem cells. Neuron 78, 785 â 798.
dc.identifier.citedreferenceBachis A., Mallei A., Cruz M. I., Wellstein A. and Mocchetti I. ( 2008 ) Chronic antidepressant treatments increase basic fibroblast growth factor and fibroblast growth factorâ binding protein in neurons. Neuropharmacology 55, 1114 â 1120.
dc.identifier.citedreferenceBalciunas D., Wangensteen K. J., Wilber A. et al. ( 2006 ) Harnessing a high cargoâ capacity transposon for genetic applications in vertebrates. PLoS Genet. 2, e169.
dc.identifier.citedreferenceBarde S., Ruegg J., Prud’homme J. et al. ( 2016 ) Alterations in the neuropeptide galanin system in major depressive disorder involve levels of transcripts, methylation, and peptide. Proc. Natl Acad. Sci. USA 113, E8472 â E8481.
dc.identifier.citedreferenceBardy C., van den Hurk M., Eames T. et al. ( 2015 ) Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro. Proc. Natl Acad. Sci. USA 112, E2725 â E2734.
dc.identifier.citedreferenceBeers J., Gulbranson D. R., George N., Siniscalchi L. I., Jones J., Thomson J. A. and Chen G. ( 2012 ) Passaging and colony expansion of human pluripotent stem cells by enzymeâ free dissociation in chemically defined culture conditions. Nat. Protoc. 7, 2029 â 2040.
dc.identifier.citedreferenceBrown S. M., Clapcote S. J., Millar J. K. et al. ( 2011 ) Synaptic modulators Nrxn1 and Nrxn3 are disregulated in a Disc1 mouse model of schizophrenia. Mol. Psychiatry 16, 585 â 587.
dc.identifier.citedreferenceDuman R. S. and Aghajanian G. K. ( 2012 ) Synaptic dysfunction in depression: potential therapeutic targets. Science 338, 68 â 72.
dc.identifier.citedreferenceEisch A. J. and Petrik D. ( 2012 ) Depression and hippocampal neurogenesis: a road to remission? Science 338, 72 â 75.
dc.identifier.citedreferenceEkerot M., Stavridis M. P., Delavaine L. et al. ( 2008 ) Negativeâ feedback regulation of FGF signalling by DUSP6/MKPâ 3 is driven by ERK1/2 and mediated by Ets factor binding to a conserved site within the DUSP6/MKPâ 3 gene promoter. Biochem. J. 412, 287 â 298.
dc.identifier.citedreferenceElsayed M., Banasr M., Duric V., Fournier N. M., Licznerski P. and Duman R. S. ( 2012 ) Antidepressant effects of fibroblast growth factorâ 2 in behavioral and cellular models of depression. Biol. Psychiatry 72, 258 â 265.
dc.identifier.citedreferenceEvans S. J., Choudary P. V., Neal C. R. et al. ( 2004 ) Dysregulation of the fibroblast growth factor system in major depression. Proc. Natl Acad. Sci. USA 101, 15506 â 15511.
dc.identifier.citedreferenceFelfly H. and Klein O. D. ( 2013 ) Sprouty genes regulate proliferation and survival of human embryonic stem cells. Sci. Rep. 3, 2277.
dc.identifier.citedreferenceFlavell S. W. and Greenberg M. E. ( 2008 ) Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu. Rev. Neurosci. 31, 563 â 590.
dc.identifier.citedreferenceFlint J. and Kendler K. S. ( 2014 ) The genetics of major depression. Neuron 81, 484 â 503.
dc.identifier.citedreferenceFordâ Perriss M., Abud H. and Murphy M. ( 2001 ) Fibroblast growth factors in the developing central nervous system. Clin. Exp. Pharmacol. Physiol. 28, 493 â 503.
dc.identifier.citedreferenceGraf E. R., Zhang X., Jin S. X., Linhoff M. W. and Craig A. M. ( 2004 ) Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119, 1013 â 1026.
dc.identifier.citedreferenceGraham B. M. and Richardson R. ( 2009 ) Acute systemic fibroblast growth factorâ 2 enhances longâ term extinction of fear and reduces reinstatement in rats. Neuropsychopharmacology 34, 1875 â 1882.
dc.identifier.citedreferenceGuillemot F. and Zimmer C. ( 2011 ) From cradle to grave: the multiple roles of fibroblast growth factors in neural development. Neuron 71, 574 â 588.
dc.identifier.citedreferenceHu Y., Guimond S. E., Travers P., Cadman S., Hohenester E., Turnbull J. E., Kim S. H. and Bouloux P. M. ( 2009 ) Novel mechanisms of fibroblast growth factor receptor 1 regulation by extracellular matrix protein anosminâ 1. J. Biol. Chem. 284, 29905 â 29920.
dc.identifier.citedreferenceHuang D. W., Sherman B. T. and Lempicki R. A. ( 2009 ) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44 â 57.
dc.identifier.citedreferenceHuang H. S., Kubish G. M., Redmond T. M., Turner D. L., Thompson R. C., Murphy G. G. and Uhler M. D. ( 2010 ) Direct transcriptional induction of Gadd45gamma by Ascl1 during neuronal differentiation. Mol. Cell Neurosci. 44, 282 â 296.
dc.identifier.citedreferenceHuang H. S., Redmond T. M., Kubish G. M., Gupta S., Thompson R. C., Turner D. L. and Uhler M. D. ( 2015 ) Transcriptional regulatory events initiated by Ascl1 and Neurog2 during neuronal differentiation of P19 embryonic carcinoma cells. J. Mol. Neurosci. 55, 684 â 705.
dc.identifier.citedreferenceJarosik J., Legutko B., Werner S., Unsicker K. and von Bohlen Und Halbach O. ( 2011 ) Roles of exogenous and endogenous FGFâ 2 in animal models of depression. Restor. Neurol. Neurosci. 29, 153 â 165.
dc.identifier.citedreferenceJuhasz G., Hullam G., Eszlari N., Gonda X., Antal P., Anderson I. M., Hokfelt T. G., Deakin J. F. and Bagdy G. ( 2014 ) Brain galanin system genes interact with life stresses in depressionâ related phenotypes. Proc. Natl Acad. Sci. USA 111, E1666 â E1673.
dc.identifier.citedreferenceKuo P. H., Chuang L. C., Liu J. R. et al. ( 2014 ) Identification of novel loci for bipolar I disorder in a multiâ stage genomeâ wide association study. Prog. Neuropsychopharmacol. Biol. Psychiatry 51, 58 â 64.
dc.identifier.citedreferenceLee J. Y., Park S., Kim K. S., Ko J. J., Lee S., Kim K. P. and Park K. S. ( 2016 ) Novel function of Sprouty4 as a regulator of stemness and differentiation of embryonic stem cells. Dev. Reprod. 20, 171 â 177.
dc.identifier.citedreferenceLi A. J., Suzuki S., Suzuki M., Mizukoshi E. and Imamura T. ( 2002 ) Fibroblast growth factorâ 2 increases functional excitatory synapses on hippocampal neurons. Eur. J. Neurosci. 16, 1313 â 1324.
dc.identifier.citedreferenceLi C., Scott D. A., Hatch E., Tian X. and Mansour S. L. ( 2007 ) Dusp6 (Mkp3) is a negative feedback regulator of FGFâ stimulated ERK signaling during mouse development. Development 134, 167 â 176.
dc.identifier.citedreferenceLiao Y., Smyth G. K. and Shi W. ( 2013 ) The Subread aligner: fast, accurate and scalable read mapping by seedâ andâ vote. Nucleic Acids Res. 41, e108.
dc.identifier.citedreferenceLiao Y., Smyth G. K. and Shi W. ( 2014 ) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923 â 930.
dc.identifier.citedreferenceLove M. I., Huber W. and Anders S. ( 2014 ) Moderated estimation of fold change and dispersion for RNAâ seq data with DESeq2. Genome Biol. 15, 550.
dc.identifier.citedreferenceMallei A., Shi B. and Mocchetti I. ( 2002 ) Antidepressant treatments induce the expression of basic fibroblast growth factor in cortical and hippocampal neurons. Mol. Pharmacol. 61, 1017 â 1024.
dc.identifier.citedreferenceMao J., McGlinn E., Huang P., Tabin C. J. and McMahon A. P. ( 2009 ) Fgfâ dependent Etv4/5 activity is required for posterior restriction of Sonic Hedgehog and promoting outgrowth of the vertebrate limb. Dev. Cell 16, 600 â 606.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.