Show simple item record

Nucleobase Protection of Deoxyribo‐ and Ribonucleosides

dc.contributor.authorIyer, Radhakrishnan P.
dc.date.accessioned2018-05-15T20:14:42Z
dc.date.available2018-05-15T20:14:42Z
dc.date.issued2000-02
dc.identifier.citationIyer, Radhakrishnan P. (2000). "Nucleobase Protection of Deoxyribo‐ and Ribonucleosides." Current Protocols in Nucleic Acid Chemistry 00(1): 2.1.1-2.1.17.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/143711
dc.description.abstractProtecting groups for the imide/lactam function of thymine/uracil and guanine, respectively, prevent irreversible nucleobase modifications that may occur in the presence of alkylating or condensing reagents that are commonly used in nucleoside protection and oligonucleotide synthesis. This unit reviews these protecting groups, and also identifies protecting groups for the exocyclic amino function of cytosine, adenine, and guanine. The unit also explores recent trends in nucleobase protection that permit reliable oligonucleotide synthesis and removal of N‐protecting groups under very mild conditions.
dc.publisherWiley Periodicals, Inc.
dc.publisherCRC Press
dc.titleNucleobase Protection of Deoxyribo‐ and Ribonucleosides
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143711/1/cpnc0201.pdf
dc.identifier.doi10.1002/0471142700.nc0201s00
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceShabarova, Z. and Bogdanov, A. 1994. Advanced organic chemistry of nucleic acids. VCH Publishers, New York.
dc.identifier.citedreferenceSproat, B.S., Iribarren, A.M., Guimil Garcia, R., and Beijer, B. 1991. New synthetic routes to synthons suitable for 2′‐O‐allyloligoribonucleotide assembly. Nucl. Acids Res. 19: 733 ‐ 738.
dc.identifier.citedreferenceSung, W.L. 1982. Synthesis of 4‐(1,2,4‐triazol‐1‐yl)pyrimidin‐2(1H)‐one‐ribonucleotide and its application in synthesis of oligoribonucleotides. J. Org. Chem. 47: 3623 ‐ 3628.
dc.identifier.citedreferenceSuzuki, T., Ohsumi, S., and Makino, K. 1994. Mechanistic studies on depurination and apurinic site chain breakage in oligodeoxyribonucletides. Nucl. Acids Res. 22: 4997 ‐ 5003.
dc.identifier.citedreferenceTakaku, H., Imai, K., and Nagai, M. 1988. Triphenylmethanesulfenyl group. A new protecting group for the uracil residue in oligoribonucleotide synthesis. Chem. Lett. 857 ‐ 860.
dc.identifier.citedreferenceTanimura, H., Fukazawa, T., Sekine, M., Hata, T., Efcavitch, J.W., and Zon, G. 1988. The practical synthesis of RNA fragments in the solid phase approach. Tetrahedron Lett. 29: 577 ‐ 578.
dc.identifier.citedreferenceTi, G.S., Gaffney, B.L., and Jones, R.A. 1982. Transient protection: Efficient one‐flask synthesis of protected deoxynucleosides. J. Am. Chem. Soc. 104: 1316 ‐ 1319.
dc.identifier.citedreferenceTrichtinger, T., Charubala, R., and Pfleiderer, W. 1983. Synthesis of O 6 ‐p‐nitrophenylethyl guanosine and 2′‐deoxyguanosine derivatives. Tetrahedron Lett. 24: 711 ‐ 714.
dc.identifier.citedreferenceUchiyama, M., Aso, Y., and Noyori, R. 1993. O‐Selective phosphorylation of nucleosides without N‐protection. J. Org. Chem. 58: 373 ‐ 379.
dc.identifier.citedreferenceUrdea, M.S., Ku, L., Horn, T., Gee, Y.G., and Warner, B.D. 1986. Base modification and cloning efficiency of oligodeoxyribonucleotides synthesized by the phosphoramidite method: Methyl versus cyanoethyl phosphorous protection. Nucl. Acids Res. Symp. Ser. 16: 257 ‐ 260.
dc.identifier.citedreferenceUznanski, B., Grajkowski, A., and Wilk, A. 1989. The isopropoxyacetic group for convenient base protection during solid‐support synthesis of oligodeoxyribonucleotides and their triester analogs. Nucl. Acids Res. 17: 4863 ‐ 4871.
dc.identifier.citedreferenceVan Aerschot, A., Herdewijn, P., Janssen, G., and Vanderhaeghe, H. 1988. Protection of the lactam function of 2′‐deoxyinosine with a 2‐(4‐nitrophenyl)‐ethyl moiety. Nucleosides Nucleotides 7: 519 ‐ 536.
dc.identifier.citedreferenceVu, H., McCollum, C., Jacobson, K., Theisen, P., Vinayak, R., Spiess, E., and Andrus, A. 1990. Fast oligonucleotide deprotection phosphoramidite chemistry for DNA synthesis. Tetrahedron Lett. 31: 7269 ‐ 7272.
dc.identifier.citedreferenceWagner, T. and Pfleiderer, W. 1997. Aglycone protection by the (2‐dansylethoxy)carbonyl (= {2‐{[5‐(dimethylamino)naphthalen‐1‐yl] sulfonyl}ethoxy}carbonyl; dnseoc) group—A new variation in oligodeoxyribonucleotide synthesis. Helv. Chim. Acta 80: 200 ‐ 212.
dc.identifier.citedreferenceWatanabe, K.A. and Fox, J.J. 1966. A simple method for selective acylation of cytidine on the 4‐amino group. Angew. Chem. Intl. Ed. Engl. 5: 579 ‐ 580.
dc.identifier.citedreferenceWelch, C.J., Bazin, H., Heikkilä, J., and Chattopadhyaya, J. 1985. Synthesis of C‐5 and N ‐ 3 arenesulfenyl uridines. Preparation and properties of a new class of uracil protecting group. Acta Chem. Scand. B39: 203 ‐ 212.
dc.identifier.citedreferenceYork, J.L. 1981. Effect of structure of the aglycon on the acid‐catalyzed hydrolysis of adenine nucleosides. J. Org. Chem. 46: 2171 ‐ 2173.
dc.identifier.citedreferenceZhou, X.‐X. and Chattopadhyaya, J. 1986. Site‐specific modification of the pyrimidine residue during the deprotection of the fully‐protected diuridylic acid. Tetrahedron 42: 5149 ‐ 5156.
dc.identifier.citedreferenceZhou, X.X., Sandström, A., and Chattopadhyaya, J. 1986. A convenient preparation of 2‐ N ‐(4‐ t ‐butylbenzoyl)‐6‐ O ‐(2‐nitrophenyl)guanosine and its application in the synthesis of 5′(GpGpGpU)3′ constituting the 3′‐anticodon stem of E.coli tRNA Ile. Chem. Scr. 26: 241 ‐ 249.
dc.identifier.citedreferenceZoltewicz, J.A. and Clark, D.F. 1972. Kinetics and mechanism of the hydrolysis of guanosine and 7‐methylguanosine nucleosides in perchloric acid. J. Org. Chem. 37: 1193 ‐ 1197.
dc.identifier.citedreferenceZoltewicz, J.A., Clark, D.F., Sharpless, T.W., and Grahe, G. 1970. Kinetics and mechanism of the hydrolysis of some purine nucleosides. J. Am. Chem. Soc. 92: 1741 ‐ 1750.
dc.identifier.citedreferenceAndrus, A. and Beaucage, S.L. 1988. 2‐Mercaptobenzothiazole—an improved reagent for the removal of methylphosphate protecting groups from oligodeoxynucleotide phosphotriesters. Tetrahedron Lett. 29: 5479 ‐ 5482.
dc.identifier.citedreferenceBalgobin, N., Josephson, S., and Chattopadhyaya, J.B. 1981. A general approach to the chemical synthesis of oligodeoxyribonucleotides. Acta. Chem. Sc and. B35: 201 ‐ 212.
dc.identifier.citedreferenceBeaucage, S.L. and Caruthers, M.H. 1981. Deoxynucleoside phosphoramidites—A new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 22: 1859 ‐ 1862.
dc.identifier.citedreferenceBeaucage, S.L. and Iyer, R.P. 1992. Advances in the synthesis of oligonucleotides by the phosphoramidite approach. Tetrahedron 48: 2223 ‐ 2311.
dc.identifier.citedreferenceBeaucage, S.L. and Iyer, R.P. 1993a. The functionalization of oligonucleotides via phosphoramidite derivatives. Tetrahedron 49: 1925 ‐ 1963.
dc.identifier.citedreferenceBeaucage, S.L. and Iyer, R.P. 1993b. The synthesis of modified oligonucleotides by the phosphoramidite approach and their applications. Tetrahedron 49: 6123 ‐ 6194.
dc.identifier.citedreferenceBeaucage, S.L. and Iyer, R.P. 1993c. The synthesis of specific ribonucleotides and unrelated phos‐phorylated biomolecules by the phosphoramidite method. Tetrahedron 49: 10441 ‐ 10488.
dc.identifier.citedreferenceBhat, V., Ugarkar, B.G., Sayeed, V.A., Grimm, K., Kosora, N., and Domenico, P. 1989. A simple and convenient method for the selective N ‐acylations of cytosine nucleosides. Nucleosides Nucleotides 8: 179 ‐ 183.
dc.identifier.citedreferenceBoal, J.H., Wilk, A., Harindranath, N., Max, E.E., Kempe, T., and Beaucage, S.L. 1996. Cleavage of oligodeoxyribonucleotides from controlled‐pore glass supports and their rapid deprotection by gaseous amines. Nucl. Acids Res. 24: 3115 ‐ 3117.
dc.identifier.citedreferenceBridson, P.K., Markiewicz, W., and Reese, C.B. 1977. Acylation of 2′,3′,5′‐tri‐O‐acetylguanosine. J. Chem. Soc., Chem. Commun.. 791 ‐ 792.
dc.identifier.citedreferenceBrown, J.M., Christodoulou, C., Modak, A.S., Reese, C.B., and Serafinowska, H.T. 1989. Synthesis of the 3′‐terminal half of yeast alanine transfer ribonucleic acid (tRNA ala ) by the phosphotriester approach in solution. Part 2. J. Chem. Soc. Perkin Trans. 1: 1751 ‐ 1767.
dc.identifier.citedreferenceBüchi, H. and Khorana, H.G. 1972. CV. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast.Chemical synthesis of an icosadeoxyribonucleotide corresponding to the nucleotide sequence 31 to 50. J. Mol. Biol. 72: 251 ‐ 288.
dc.identifier.citedreferenceCaruthers, M.H., McBride, L.J., Bracco, L.P., and Dubendorff, J.W. 1985. Studies on nucleotide chemistry 15. Synthesis of oligodeoxynucleotides using amidine protected nucleosides. Nucleosides Nucleotides 4: 95 ‐ 105.
dc.identifier.citedreferenceChaix, C., Molko, D., and Téoule, R. 1989. The use of labile base protecting groups in oligoribonucleotide synthesis. Tetrahedron Lett. 30: 71 ‐ 74.
dc.identifier.citedreferenceClauwaert, J. and Stockx, J. 1986. Interactions of polynucleotides and their components. I. Dissociation constants of the bases and their derivatives. Z. Naturforsch. B. 23: 25 ‐ 30.
dc.identifier.citedreferenceden Hartog, J.A.J., Willie, G., Scheublin, R.A., and van Boom, J.H. 1982. Chemical synthesis of a messenger ribonucleic acid fragment: AUGUUCUUCUUCUUCUUC. Biochemistry 21: 1009 ‐ 1018.
dc.identifier.citedreferenceDikshit, A., Chaddha, M., Singh, R.K., and Misra, K. 1988. Naphthaloyl group: A new selective amino protecting group for deoxynucleosides in oligonucleotide synthesis. Can. J. Chem. 66: 2989 ‐ 2994.
dc.identifier.citedreferenceDivakar, K.J. and Reese, C.B. 1982. 4‐(1,2,4‐Triazol‐1‐yl)‐ and 4‐(3‐nitro‐1,2,4‐triazol‐1‐yl)‐1‐(β‐D‐2,3,5‐tri‐O‐acetylarabinofuranosyl)pyrimidin‐2(1 H ‐ones. Valuable intermediates in the synthesis of derivatives of 1‐(β‐D‐arabinofuranosyl)cytosine (Ara‐C). J. Chem. Soc. Perkin Trans 1: 1171 ‐ 1176.
dc.identifier.citedreferenceDreef‐Tromp, C.M., van Dam, E.M.A., van den Elst, H., van der Marel, G.A., and van Boom, J.H. 1990. Solid‐phase synthesis of H‐Phe‐Tyr‐(pATAT)‐NH 2: A nucleopeptide fragment from the nucleoprotein of bacteriophage ϕX174. Nucl. Acids Res. 18: 6491 ‐ 6495.
dc.identifier.citedreferenceDunn, D.B., and Hall, R.H. 1975. Purines, pyrimidines, nucleosides and nucleotides: Physical constants and spectral properties. In Handbook of Biochemistry and Molecular Biology, 3 rd ed., Vol. 1: Nucleic Acids ( G.D. Fasman ed.) pp. 65 ‐ 125. CRC Press, Boca Raton, Fla.
dc.identifier.citedreferenceEngels, J.W. and Mag, M. 1982. Amide protection in oligodeoxynucleotide synthesis. Nucleosides Nucleotides 6: 473 ‐ 475.
dc.identifier.citedreferenceFourrey, J.‐L. and Varenne, J. 1985. Preparation and phosphorylation reactivity of N ‐nonacylated nucleoside phosphoramidites. Tetrahedron Lett. 26: 2663 ‐ 2666.
dc.identifier.citedreferenceFrancois, P., Hamoir, G., Sonveaux, E., Vermeersch, H., and Ma, Y. 1985. On the phosphorylation of deoxyribonucleosides and the protection of deoxyguanosine. Bull. Soc. Chim. Belg. 94: 821 ‐ 823.
dc.identifier.citedreferenceFroehler, B.C. and Matteucci, M.D. 1983. Dialkylformamidines: Depurination resistant N 6 ‐protecting group for deoxyadenosine. Nucl. Acids Res. 11: 8031 ‐ 8036.
dc.identifier.citedreferenceFroehler, B.C., Ng, P.G., and Matteucci, M.D. 1986. Synthesis of DNA via deoxynucleoside H‐phosphonate intermediates. Nucl. Acids Res. 14: 5399 ‐ 5407.
dc.identifier.citedreferenceFujii, M., Yamakage, S., Takaku, H., and Hata, T. 1987. (Butylthio)carbonyl group: A new protecting group for the guanine residue in oligoribonucleotide synthesis. Tetrahedron Lett. 28: 5713 ‐ 5716.
dc.identifier.citedreferenceGaffney, B.L. and Jones, R.A. 1982. A new strategy for the protection of deoxyguanosine during oligonucleotide synthesis. Tetrahedron Lett. 23: 2257 ‐ 2260.
dc.identifier.citedreferenceGaregg, P.J., Lindh, I., Regberg, T., Stawinski, J., Strömberg, R., and Henrichson, C. 1986. Nucleoside H‐phosphonates. IV. Automated solid phase synthesis of oligoribonucleotides by the hydrogenphosphonate approach. Tetrahedron Lett. 27: 4055 ‐ 4058.
dc.identifier.citedreferenceGilham, P.T. and Khorana, H.G. 1958. Studies on polynucleotides. I. A new and general method for the chemical synthesis of the C 5 ′‐C 3 ′ internucleotidic linkage. Syntheses of deoxyribo‐dinucleotides. J. Am. Chem. Soc. 80: 6212 ‐ 6222.
dc.identifier.citedreferenceGryaznov, S.M. and Letsinger, R.L. 1991. Synthesis of oligonucleotides via monomers with unprotected bases. J. Am. Chem. Soc. 113: 5876 ‐ 5877.
dc.identifier.citedreferenceHagen, M.D. and Chládek, S. 1989. General synthesis of 2′(3′)‐ O ‐aminoacyl oligoribonucleotides. The protecion of the guanine moiety. J. Org. Chem. 54: 3189 ‐ 3195.
dc.identifier.citedreferenceHall, R.H., Todd, A.R., and Webb, R.F. 1957. Nucleotides. Part XLI. Mixed anhydrides as intermediates in the synthesis of dinucleoside phosphates. J. Chem. Soc. 3291 ‐ 3296.
dc.identifier.citedreferenceHayakawa, Y., Kato, H., Uchiyama, M., Kajino, H., and Noyori, R. 1986. Allyloxycarbonyl group: A versatile blocking group for nucleotide synthesis. J. Org. Chem 51: 2400 ‐ 2402.
dc.identifier.citedreferenceHayakawa, Y., Wakabayashi, S., Kato, H., and Noyori, R. 1990. The allylic protection method in solid‐phase oligonucleotide synthesis. An efficient preparation of solid‐anchored DNA oligomers. J. Am. Chem. Soc. 112: 1691 ‐ 1696.
dc.identifier.citedreferenceHayakawa, Y., Hirose, M., and Noyori, R. 1993. O‐Allyl protection of guanine and thymine residues in oligodeoxyribonucleotides. J. Org. Chem. 58: 5551 ‐ 5555.
dc.identifier.citedreferenceHeikkilä, J. and Chattopadhyaya, J. 1983. The 9‐fluorenylmethoxycarbonyl (Fmoc) group for the protection of amino functions of cytidine, adenosine, guanosine and their 2′‐deoxysugar derivatives. Acta Chem. Scand. B37: 263 ‐ 265.
dc.identifier.citedreferenceHimmelsbach, F., Schulz, B.S., Trichtinger, T., Charubala, R., and Pfleiderer, W. 1984. The p‐nitrophenylethyl (NPE) group. A versatile new blocking group for phosphate and aglycone protection in nucleosides and nucleotides. Tetrahedron 40: 59 ‐ 72.
dc.identifier.citedreferenceHoly, A. and Zemlicka, J. 1969. Oligonucleotidic compounds. XXXIII. A study on hydrolysis of N‐dimethylaminomethylenecytidine, ‐adenosine, ‐guanosine, and related 2′‐deoxy compounds. Collect. Czech. Chem. Commun. 34: 2449 ‐ 2458.
dc.identifier.citedreferenceHonda, S., Urakami, K., Koura, K., Terada, K., Sato, Y., Kohno, K., Sekine, M., and Hata, T. 1984. Synthesis of oligoribonucleotides by use of S,S ‐diphenyl N ‐monomethoxytrityl ribonucleoside 3′‐phosphorodithioates. Tetrahedron 40: 153 ‐ 163.
dc.identifier.citedreferenceHuynh‐Dinh, T., Langlois d’Estaintot, B., Allard, P., and Igolen, J. 1985. Synthèse simplifièe de sondes mixtes avec des triazolo‐nucléosides. Tetrahedron Lett. 26: 431 ‐ 434.
dc.identifier.citedreferenceIgolen, J. and Morin, C. 1980. Rapid synthesis of protected 2′‐deoxycytidine derivatives. J. Org. Chem. 45: 4802 ‐ 4804.
dc.identifier.citedreferenceIto, T., Ueda, S., and Takaku, H. 1986. (Methoxyethoxy)methyl group: New amide and hydroxyl protecting groups of uridine in oligonucleotide synthesis. J. Org. Chem. 51: 931 ‐ 933.
dc.identifier.citedreferenceIyer, R.P. and Beaucage, S.L. 1999. Oligonucleotide synthesis. In Comprehensive Natural Products Chemistry Vol. 7: DNA and Aspects of Molecular Biology ( E.T. Kool ed.) pp. 105 ‐ 152. Elsevier Science Publishing, New York.
dc.identifier.citedreferenceIyer, R.P., Yu, D., Habus, I., Ho, N.H., Johnson, S., Devlin, T., Jiang, Z., Zhou, W., Xie, J., and Agrawal, S. 1997. N‐Pent‐4‐enoyl (PNT) group as a universal nucleobase protector: Applications in the rapid and facile synthesis of oligonucleotides, analogs and conjugates. Tetrahedron 53: 2731 ‐ 2750.
dc.identifier.citedreferenceJones, S.S., Reese, C.B., Sibanda, S., and Ubasawa, A. 1981. The protection of uracil and guanine residues in oligonucleotide synthesis. Tetrahedron Lett. 22: 4755 ‐ 4758.
dc.identifier.citedreferenceKamaike, K., Hasegawa, Y., and Ishido, Y. 1988. A simple, preparative procedure for N 3 ‐anisoyluridine and O 6 ‐diphenylcarbamoylguanosine 2′‐ O ‐(tetrahydropyran‐2‐yl) derivatives via the corresponding 3′,5′‐dibenzoates. Nucleosides Nucleotides 7: 37 ‐ 43.
dc.identifier.citedreferenceKamimura, T., Masegi, T., Urakami, K., Honda, S., Sekine, M., and Hata, T. 1983a. A new protecting tactics for the uracil residue in oligoribonucleotide synthesis. Chem. Lett. 1051 ‐ 1054.
dc.identifier.citedreferenceKamimura, T., Tsuchiya, M., Koura, K., Sekine, M., and Hata, T. 1983b. Diphenylcarbamoyl and propionyl groups: A new combination of protecting groups on the guanine residue. Tetrahedron Lett. 24: 2775 ‐ 2778.
dc.identifier.citedreferenceKhorana, H.G. 1979. Total synthesis of a gene. Science 203: 614 ‐ 625.
dc.identifier.citedreferenceKöster, H., Kulikowski, K., Liese, T., Heikens, W., and Kohli, V. 1981. N ‐acyl protecting groups for deoxynucleosides. A quantitative and comparative study. Tetrahedron 37: 363 ‐ 369.
dc.identifier.citedreferenceKrecmerová, M., Hrebabecky, H., and Holy, A. 1990. Synthesis of 5′‐O‐phosphonomethyl derivatives of pyridine 2′‐deoxynucleosides. Collect. Czech. Chem. Commun. 55: 2521 ‐ 2536.
dc.identifier.citedreferenceKuijpers, W.H.A., Huskens, J., and van Boeckel, C.A.A. 1990. The 2‐(acetoxymethyl)benzoyl (AMB) group as a new base‐protecting group, designed for the protection of phosphate modified oligonucleotides. Tetrahedron Lett. 31: 6729 ‐ 6732.
dc.identifier.citedreferenceKume, A., Sekine, M., and Hata, T. 1982. Phthaloyl group: A new amino protecting group of deoxyadenosine in oligonucleotide synthesis. Tetrahedron Lett. 23: 4365 ‐ 4368.
dc.identifier.citedreferenceKume, A., Iwase, R., Sekine, M., and Hata, T. 1984. Cyclic diacyl groups for protection of the N 6 ‐amino group of deoxyadenosine in oligodeoxynucleotide synthesis. Nucl. Acids Res. 12: 8525 ‐ 8538.
dc.identifier.citedreferenceLetsinger, R.L. and Ogilvie, K.K. 1969. Synthesis of oligothymidylates via phosphotriester intermediates. J. Am. Chem. Soc. 91: 3350 ‐ 3355.
dc.identifier.citedreferenceLetsinger, R.L. and Lunsford, W.B. 1976. Synthesis of thymidine oligonucleotides by phosphite triester intermediates. J. Am. Chem. Soc. 98: 3655 ‐ 3661.
dc.identifier.citedreferenceLi, B.F.L., Reese, C.B., and Swann, P.F. 1987. Synthesis and characterization of oligodeoxynucleotides containing 4‐ O ‐methylthymine. Biochemistry 26: 1086 ‐ 1093.
dc.identifier.citedreferenceMacMillan, A.M. and Verdine, G.L. 1991. Engineering tethered DNA molecules by the convertible nucleoside approach. Tetrahedron 47: 2603 ‐ 2616.
dc.identifier.citedreferenceMag, M. and Engels, J.W. 1988. Synthesis and structure assignments of amide protected nucleosides and their use as phosphoramidites in deoxyoligonucleotide synthesis. Nucl. Acids Res. 16: 3525 ‐ 3543.
dc.identifier.citedreferenceMarugg, J.E., Tromp, M., Jhurani, P., Hoyng, C.F., van der Marel, G.A., and van Boom, J.H. 1984. Synthesis of DNA fragments by the hydroxybenzotriazole phosphodiester approach. Tetrahedron 40: 73 ‐ 78.
dc.identifier.citedreferenceMatteucci, M.D. and Caruthers, M.H. 1980. The synthesis of oligodeoxypyrimidines on a polymer support. Tetrahedron Lett. 21: 719 ‐ 722.
dc.identifier.citedreferenceMcBride, L.J., Kierzek, R., Beaucage, S.L., and Caruthers, M.H. 1986. Amidine protecting groups for oligonucleotide synthesis. J. Am. Chem. Soc. 108: 2040 ‐ 2048.
dc.identifier.citedreferenceMcBride, L.J., Eadie, J.S., Efcavitch, J.W., and Andrus, A. 1987. Base modification and the phosphoramidite approach. Nucleosides Nucleotides 6: 297 ‐ 300.
dc.identifier.citedreferenceMichelson, A.M. and Todd, A.R. 1955. Nucleotides. Part XXXII. Synthesis of a dithymidine dinucleotide containing a 3′:5′‐internucleotidic linkage. J. Chem. Soc. 2632 ‐ 2638.
dc.identifier.citedreferenceMishra, R.K. and Misra, K. 1986. Improved synthesis of oligodeoxyribonucleotide using 3‐methoxy‐4‐phenoxybenzoyl group for amino protection. Nucl. Acids Res. 14: 6197 ‐ 6213.
dc.identifier.citedreferenceMullah, B., Andrus, A., Zhao, H., and Jones, R.A. 1995. Oxidative conversion of N‐ dimethylformamidine nucleosides to N ‐cyano nucleosides. Tetrahedron Lett. 36: 4373 ‐ 4376.
dc.identifier.citedreferenceNagaich, A.K. and Misra, K. 1989. Highly efficient synthesis of oligodeoxyribonucleotides using α‐phenyl cinnamoyl group for selective amino protection. Nucl. Acids Res. 17: 5125 ‐ 5134.
dc.identifier.citedreferenceNarang, S.A., Itakura, K., and Wightman, R.H. 1972. A simplification in the synthesis of deoxyribooligonucleotides. Can. J. Chem. 50: 769 ‐ 770.
dc.identifier.citedreferenceNielsen, J., Dahl, O., Remaud, G., and Chattopadhyaya, J. 1987. Phosphitylation of guanine or inosine bases during the preparation of nucleoside phosphoramidites. Isolation of model products as thiophosphoric amide derivatives and structure elucidation by 15 N NMR spectroscopy. Acta. Chem. Scand. B41: 633 ‐ 639.
dc.identifier.citedreferenceNyilas, A., Zhou, X.‐X., Welch, C.J., and Chattopadhyaya, J. 1987. A versatile strategy for the O4‐protection and modification of the lactam function of uridine and uridylic acid. Nucl. Acids Res. Symp. Ser. 18: 157 ‐ 160.
dc.identifier.citedreferenceNyilas, A., Földesi, A., and Chattopadhyaya, J. 1988. Arenesulfonylethoxycarbonyl—A set of amino protecting groups for DNA and RNA synthesis. Nucleosides Nucleotides 7: 787 ‐ 793.
dc.identifier.citedreferenceOgilvie, K.K., Nemer, M.J., Hakimelahi, G.H., Proba, Z.A., and Lucas, M. 1982. N‐Levulination of nucleosides. Tetrahedron Lett. 23: 2615 ‐ 2618.
dc.identifier.citedreferenceOivanen, M., Lönnberg, H., Zhou, X.X., and Chattopadhyaya, J. 1987. Acidic hydrolysis of 6‐substituted 9‐(2‐deoxy‐β‐D‐erythro‐pentofuranosyl)purines and their 9‐(1‐alkoxyethyl) counterparts: Kinetics and mechanism. Tetrahedron 43: 1133 ‐ 1140.
dc.identifier.citedreferencePaul, C.H. and Royappa, A.T. 1996. Acid binding and detritylation during oligonucleotide synthesis. Nucl. Acids Res. 24: 3048 ‐ 3052.
dc.identifier.citedreferencePfister, M. and Pfleiderer, W. 1989. New results in oligoribonucleotide synthesis. Nucleosides Nucleotides 8: 1001 ‐ 1006.
dc.identifier.citedreferencePfister, M., Farkas, S., Charubala, R., and Pfleiderer, W. 1988. Recent progress in oligoribonucleotide synthesis. Nucleosides Nucleotides 7: 595 ‐ 600.
dc.identifier.citedreferencePfleiderer, W., Himmelsbach, F., Charubala, R., Schirmeister, H., Beiter, A., Schulz, B., and Trichtinger, T. 1985. The p‐nitrophenylethyl group—An universal blocking group in nucleoside and nucleotide chemistry. Nucleosides Nucleotides 4: 81 ‐ 94.
dc.identifier.citedreferencePon, R.T., Damha, M.J., and Ogilvie, K.K. 1985a. Necessary protection of the O 6 ‐position of guanosine during the solid phase synthesis of oligonucleotides by the phosphoramidite approach. Tetrahedron Lett. 26: 2525 ‐ 2528.
dc.identifier.citedreferencePon, R.T., Damha, M.J., and Ogilvie, K.K. 1985b. Modification of guanine bases by nucleoside phosphoramidite reagents during the solid phase synthesis of oligonucleotides. Nucl. Acids Res. 13: 6447 ‐ 6465.
dc.identifier.citedreferencePrasad, A.K. and Wengel, J. 1996. Enzyme‐mediated protecting group chemistry on the hydroxyl groups of nucleosides. Nucleosides Nucleotides 15: 1347 ‐ 1359.
dc.identifier.citedreferenceRao, T.S., Reese, C.B., Serafinowska, H.T., Takaku, H., and Zappia, G. 1987. Solid‐phase synthesis of the 3′‐terminal nonadecaribonucleoside octadecaphosphate sequence of yeast alanine transfer ribonucleic acid. Tetrahedron Lett. 28: 4897 ‐ 4900.
dc.identifier.citedreferenceReddy, M.P., Hanna, N.B., and Farooqui, F. 1994. Fast cleavage and deprotection of oligonucleotides. Tetrahedron Lett. 35: 4311 ‐ 4314.
dc.identifier.citedreferenceReese, C.B. 1978. The chemical synthesis of oligo‐ and poly‐nucleotides by the phosphotriester approach. Tetrahedron 34: 3143 ‐ 3179.
dc.identifier.citedreferenceReese, C.B. and Ubasawa, A. 1980. Reaction between 1‐arenesulphonyl‐3‐nitro‐1,2,4‐triazoles and nucleoside residues. Elucidation of the nature of side‐reactions during oligonucleotide synthesis. Tetrahedron Lett. 21: 2265 ‐ 2268.
dc.identifier.citedreferenceReese, C.B. and Skone, P.A. 1984. The protection of thymine and guanine residues in oligodeoxyribonucleotide synthesis. J. Chem. Soc. Perkin Trans. 1: 1263.
dc.identifier.citedreferenceRomero, R., Stein, R., Bull, H.G., and Cordes, E.H. 1978. Secondary deuterium isotope effects for acid‐catalyzed hydrolysis of inosine and adenosine. J. Am. Chem. Soc. 100: 7620 ‐ 7624.
dc.identifier.citedreferenceSaenger, W. 1984. Principles of Nucleic Acids Structure. Springer‐Verlag, New York.
dc.identifier.citedreferenceScalfi‐Happ, C., Happ, E., and Chládek, S. 1987. New approach to the synthesis of 2′(3′)‐O‐aminoacyl‐oligoribonucleotides related to the 3′‐terminus of aminoacyl transfer ribonucleic acid. Nucleosides Nucleotides 6: 345 ‐ 348.
dc.identifier.citedreferenceSchaller, H., Weimann, G., Lerch, W.B., and Khorana, H.G. 1963. Studies on polynucleotides. XXIV. The stepwise synthesis of specific deoxyribopolynucleotides (4). Protected derivatives of deoxyribonucleosides and new syntheses of deoxyribonucleoside‐3′ phosphates. J. Am. Chem. Soc. 85: 3821 ‐ 3827.
dc.identifier.citedreferenceSchulhof, J.C., Molko, D., and Teoule, R. 1987. Facile removal of new base protecting groups useful in oligonucleotide synthesis. Tetrahedron Lett. 28: 51 ‐ 54.
dc.identifier.citedreferenceSeela, F. and Driller, H. 1989. 7‐Deaza‐2′‐deoxy‐O 6 ‐methylguanosine: Selective N 2 ‐formylation via a formamidine, phosphoramidite. Synthesis and properties of oligonucleotides. Nucleosides Nucleotides 8: 1 ‐ 21.
dc.identifier.citedreferenceSekine, M. 1989. General method for the preparation of N 3 ‐ and O 4 ‐substituted uridine derivatives by phase‐transfer reactions. J. Org. Chem. 54: 2321 ‐ 2326.
dc.identifier.citedreferenceSekine, M., Masuda, N., and Hata, T. 1985. Introduction of the 4,4′,4′′‐tris(benzoyloxy)trityl group into the exo amino groups of deoxyribonucleosides and its properties. Tetrahedron 41: 5445 ‐ 5453.
dc.identifier.citedreferenceShimidzu, T. and Letsinger, R.L. 1968. Synthesis of deoxyguanylyl‐deoxyguanosine on an insoluble polymer support. J. Org. Chem. 33: 708 ‐ 711.
dc.identifier.citedreferenceSingh, R.K. and Misra, K. 1988. Improvements in oligodeoxyribonucleotide synthesis using phen‐ oxyacetyl as amino protecting group. Indian J. Chem. 27B: 409 ‐ 417.
dc.identifier.citedreferenceSinha, N.D., Davis, P., Usman, N., Pérez, J., Hodge, R., Kremsky, J., and Casale, R. 1993. Labile exocyclic amine protection of nucleosides in DNA, RNA and oligonucleotide analog synthesis facilitating N‐deacylation, minimizing depurination and chain degradation. Biochimie 75: 13 ‐ 23.
dc.identifier.citedreferenceSmrt, J. and Sorm, F. 1967. Oligonucleotidic compounds. XVIII. Synthesis of guanylyl‐(3′‐5′)‐uridylyl‐(3′‐5′)‐arabinofuranosyluracil and guanylyl‐(3′‐5′)‐uridylyl‐(3′‐5′)‐arabinofurano‐sylcytosine. Collect. Czech. Chem. Commun. 32: 3169 ‐ 3176.
dc.identifier.citedreferenceSonveaux, E. 1986. The organic chemistry underlying DNA synthesis. Bioorganic Chem. 14: 274 ‐ 325.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.