Show simple item record

Isolation of Glyoxysomes from Pumpkin Cotyledons

dc.contributor.authorHarrison‐lowe, Nicola
dc.contributor.authorOlsen, Laura J.
dc.date.accessioned2018-05-15T20:14:44Z
dc.date.available2018-05-15T20:14:44Z
dc.date.issued2005-12
dc.identifier.citationHarrison‐lowe, Nicola ; Olsen, Laura J. (2005). "Isolation of Glyoxysomes from Pumpkin Cotyledons." Current Protocols in Cell Biology 29(1): 3.19.1-3.19.8.
dc.identifier.issn1934-2500
dc.identifier.issn1934-2616
dc.identifier.urihttps://hdl.handle.net/2027.42/143713
dc.description.abstractPeroxisomes are singleâ membraneâ bound organelles found in virtually all eukaryotes. In plants, there are several classes of peroxisomes. Glyoxysomes are found in germinating seedlings and contain enzymes specific for the glyoxylate cycle, including isocitrate lyase and malate synthase. After seedlings become photosynthetic, leaf peroxisomes participate in reactions of the photorespiration pathway and contain characteristic enzymes such as glycolate oxidase and hydroxypyruvate reductase. As leaves begin to senesce, leaf peroxisomes are transformed back into glyoxysomes. Root peroxisomes in the nodules of legumes, for example, sequester enzymes such as allantoinase and uricase, which contribute to nitrogen metabolism in these tissues. Thus, peroxisomes participate in many metabolic pathways and contain specific enzyme complements, depending on the tissue source. All peroxisomes contain catalase to degrade hydrogen peroxide and enzymes to accomplish βâ oxidation of fatty acids. Glyoxysomes can be isolated from pumpkin cotyledons by standard differential centrifugation and density separation, as described in this article.
dc.publisherWiley Periodicals, Inc.
dc.publisherKluwer Academic Publishers
dc.subject.otherprotein import
dc.subject.otherperoxisomes
dc.subject.otherglyoxysomes
dc.titleIsolation of Glyoxysomes from Pumpkin Cotyledons
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143713/1/cpcb0319.pdf
dc.identifier.doi10.1002/0471143030.cb0319s29
dc.identifier.sourceCurrent Protocols in Cell Biology
dc.identifier.citedreferenceStintzi, A. and Browse, J. 2000. The Arabidopsis maleâ sterile mutant, opr3, lacks the 12â oxophytodienoic acid reductase required for jasmonate synthesis. Proc. Natl. Acad. Sci. U.S.A. 97: 10625 â 10630.
dc.identifier.citedreferenceBrown, L.A. and Baker, A. 2003. Peroxisome biogenesis and the role of protein import. J. Cell. Molec. Med. 7: 388 â 400.
dc.identifier.citedreferenceCooper, G. and Beevers, H. 1969. Mitochondria and glyoxysomes from castor bean endosperm. Enzyme constituents and catalytic capacity. J. Biol. Chem. 244: 3507 â 3513.
dc.identifier.citedreferenceCrookes, W.J. and Olsen, L.J. 1998. The effects of chaperones and the influence of protein assembly on peroxisomal protein import. J. Biol. Chem. 273: 17236 â 17242.
dc.identifier.citedreferenceGoyer, A., Johnson, T.L., Olsen, L.J., Collakova, E., Shacharâ Hill, Y., Rhodes, D., and Hanson, A.D. 2004. Characterization and metabolic function of a peroxisomal sarcosine and pipecolate oxidase from Arabidopsis. J. Biol. Chem. 279: 16947 â 16953.
dc.identifier.citedreferenceHatch, M.D. 1978. A simple spectrophotometric assay for fumarate hydratase in crude tissue extracts. Anal. Biochem. 85: 271 â 275.
dc.identifier.citedreferenceHeinze, M., Reichelt, R., Kleff, S., and Eising, K. 2000. High resolution scanning electron microscopy of protein inclusions (cores) purified from peroxisomes of sunflower ( Helianthus annuus L.) cotyledons. Cryst. Res. Technol. 35: 877 â 886.
dc.identifier.citedreferenceJohnson, T.L. and Olsen, L.J. 2001. Building new models for peroxisome biogenesis. Plant Physiol. 127: 731 â 739.
dc.identifier.citedreferenceJohnson, T.L. and Olsen, L.J. 2003. Import of the peroxisomal targeting signal type 2 protein 3â ketoacylâ coenzyme A thiolase into glyoxysomes. Plant Physiol. 133: 1991 â 1999.
dc.identifier.citedreferenceLiepman, A.H. and Olsen, L.J. 2001. Peroxisomal alanine:glyoxylate aminotransferase (AGT1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaliana. Plant J. 25: 487 â 498.
dc.identifier.citedreferenceLiepman, A.H. and Olsen, L.J. 2003. Alanine aminotransferase homologs catalyze the glutamate:glyoxylate aminotransferase reaction in peroxisomes of Arabidopsis. Plant Physiol. 131: 215 â 227.
dc.identifier.citedreferenceMori, H. and Nishimura, M. 1989. Glyoxysomal malate synthase is specifically degraded in microbodies during greening of pumpkin cotyledons. FEBS Lett. 244: 163 â 166.
dc.identifier.citedreferenceOlsen, L.J. 1998. The surprising complexity of peroxisome biogenesis. Plant Mol. Biol. 38: 163 â 189.
dc.identifier.citedreferenceOlsen, L.J. and Harada, J.J. 1995. Peroxisomes and their assembly in higher plants. Annu Rev. Plant Physiol. 46: 123 â 146.
dc.identifier.citedreferencePurdue, P.E. and Lazarow, P.B. 2001. Peroxisome biogenesis. Annu. Rev. Cell Devel. Biol. 17: 701 â 752.
dc.identifier.citedreferenceSanders, P.M., Lee, P.Y., Biesgen, C., Boone, J.D., Beals, T.P., Weiler, E.W., and Goldberg, R.B. 2000. The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12: 1041 â 1061.
dc.identifier.citedreferenceSubramani, S. 1996. Protein translocation into peroxisomes. J. Biol. Chem. 271: 32483 â 32486.
dc.identifier.citedreferenceTolbert, N.E. 1971. Microbodies: peroxisomes and glyoxysomes. Annu. Rev. Plant Physiol. 21: 45 â 74.
dc.identifier.citedreferenceZolman, B.K. and Bartel, B. 2004. An Arabidopsis indoleâ 3â butyric acidâ response mutant defective in PEROXIN 6, an apparent ATPase implicated in peroxisomal function. Proc. Natl. Acad. Sci. U.S.A. 101: 1786 â 1791.
dc.identifier.citedreferenceZolman, B.K., Yoder, A., and Bartel, B. 2000. Genetic analysis of indoleâ 3â butyric acid responses in Arabidopsis thaliana reveals four mutant classes. Genetics 156: 1323 â 1337.
dc.identifier.citedreferenceZolman, B.K., Monroeâ Augustus, M., Thompson, B., Hawes, J.W., Krukenberg, K.A., Matsuda, S.P., and Bartel, B. 2001. chy1 an Arabidopsis mutant with impaired betaâ oxidation, is defective in a peroxisomal betaâ hydroxyisobutyrylâ CoA hydrolase. J. Biol. Chem. 276: 31037 â 31046.
dc.identifier.citedreferenceAebi, H. 1984. Catalase in vitro. Methods Enzymol. 105: 121 â 126.
dc.identifier.citedreferenceBeevers, H. 2002. Early research on peroxisomes in plants. In Plant Peroxisomes. Biochemistry, Cell Biology and Biotechnological Applications.( A. Baker and I.A. Graham, eds.)pp. 1 â 17. Kluwer Academic Publishers. New York.
dc.identifier.citedreferenceBehari, R. and Baker, A. 1993. The carboxyl terminus of isocitrate lyase is not essential for import into glyoxysomes in an in vitro system. J. Biol. Chem. 268: 7315 â 7322.
dc.identifier.citedreferenceBrickner, D.G. and Olsen, L.J. 1998. Nucleotide triphosphates are required for the transport of glycolate oxidase into peroxisomes. Plant Physiol. 116: 309 â 317.
dc.identifier.citedreferenceBrickner, D.G., Harada, J.J., and Olsen, L.J. 1997. Protein transport into higher plant peroxisomes. In vitro import assay provides evidence for receptor involvement. Plant Physiol. 113: 1213 â 1221.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.