Show simple item record

Chemokine receptorâ 7 (CCR7) deficiency leads to delayed development of joint damage and functional deficits in a murine model of osteoarthritis

dc.contributor.authorSambamurthy, Nisha
dc.contributor.authorNguyen, Vu
dc.contributor.authorSmalley, Ryan
dc.contributor.authorXiao, Rui
dc.contributor.authorHankenson, Kurt
dc.contributor.authorGan, Justin
dc.contributor.authorMiller, Rachel E.
dc.contributor.authorMalfait, Anne‐marie
dc.contributor.authorDodge, George R.
dc.contributor.authorScanzello, Carla R.
dc.date.accessioned2018-05-15T20:14:48Z
dc.date.available2019-05-13T14:45:27Zen
dc.date.issued2018-03
dc.identifier.citationSambamurthy, Nisha; Nguyen, Vu; Smalley, Ryan; Xiao, Rui; Hankenson, Kurt; Gan, Justin; Miller, Rachel E.; Malfait, Anne‐marie ; Dodge, George R.; Scanzello, Carla R. (2018). "Chemokine receptorâ 7 (CCR7) deficiency leads to delayed development of joint damage and functional deficits in a murine model of osteoarthritis." Journal of Orthopaedic Research® 36(3): 864-875.
dc.identifier.issn0736-0266
dc.identifier.issn1554-527X
dc.identifier.urihttps://hdl.handle.net/2027.42/143717
dc.description.abstractElevated chemokine receptor Ccr7 is observed in knee osteoarthritis (OA) and associated with severity of symptoms. In this study, we confirmed that CCR7 protein expression is elevated in synovial tissue from OA patients by immunohistochemical staining. We then investigated whether Ccr7 deficiency impacted structural and functional joint degeneration utilizing a murine model of OA. OAâ like disease was induced in male C57BL/6 and Ccr7â deficient (Ccr7â /â ) mice by destabilization of the medial meniscus (DMM). Functional deficits were measured by computer integrated monitoring of spontaneous activity every 4 weeks after DMM surgery up 16 weeks. Joint degeneration was evaluated at 6 and 19 weeks postâ surgery by histopathology, and subchondral bone changes analyzed by microCT. Results showed reduction in locomotor activities in DMMâ operated C57BL/6 mice by 8 weeks, while activity decreases in Ccr7â /â mice were delayed until 16 weeks. Histopathologic evaluation showed minimal protection from early cartilage degeneration (pâ =â 0.06) and osteophytosis (pâ =â 0.04) in Ccr7â /â mice 6 weeks postâ DMM compared to C57BL/6 controls, but not at 19 weeks. However, subchondral bone mineral density (pâ =â 0.03) and histologic sclerosis (pâ =â 0.02) increased in response to surgery in C57BL/6 mice at 6 weeks, while Ccr7â /â mice were protected from these changes. Our results are the first to demonstrate a role for Ccr7 in early development of functional deficits and subchondral bone changes in the DMM model. Understanding the mechanism of Ccr7 receptor signaling in the initiation of joint pathology and disability will inform the development of innovative therapies to slow symptomatic OA development after injury. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. J Orthop Res 36:864â 875, 2018.
dc.publisherWiley Periodicals, Inc.
dc.subject.othermurine behavioral analysis
dc.subject.otherosteoarthritis
dc.subject.otherchemokines
dc.subject.otheranimal model
dc.subject.otherbone remodeling
dc.titleChemokine receptorâ 7 (CCR7) deficiency leads to delayed development of joint damage and functional deficits in a murine model of osteoarthritis
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelKinesiology and Sports
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143717/1/jor23671.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143717/2/jor23671_am.pdf
dc.identifier.doi10.1002/jor.23671
dc.identifier.sourceJournal of Orthopaedic Research®
dc.identifier.citedreferenceJackson MT, Moradi B, Zaki S, et al. 2014. Depletion of proteaseâ activated receptor 2 but not proteaseâ activated receptor 1 may confer protection against osteoarthritis in mice through extracartilaginous mechanisms. Arthritis Rheumatol 66: 3337 â 3348.
dc.identifier.citedreferenceBurr DB, Gallant MA. 2012. Bone remodelling in osteoarthritis. Nat Rev Rheumatol 8: 665 â 673.
dc.identifier.citedreferenceLoeser RF, Olex A, McNulty MA, et al. 2012. Microarray analysis reveals ageâ related differences in gene expression during the development of osteoarthritis in mice. Arthritis Rheum 64: 705 â 717.
dc.identifier.citedreferenceLewis JS, Jr., Furman BD, Zeitler E, et al. 2013. Genetic and cellular evidence of decreased inflammation associated with reduced incidence of posttraumatic arthritis in MRL/MpJ mice. Arthritis Rheum 65: 660 â 670.
dc.identifier.citedreferenceNair A, Gan J, Bushâ Joseph C, et al. 2015. Synovial chemokine expression and relationship with knee symptoms in patients with meniscal tears. Osteoarthritis Cartilage 23: 1158 â 1164.
dc.identifier.citedreferenceOuterbridge RE. 1961. The etiology of chondromalacia patellae. J Bone Joint Surg Br 43â B: 752 â 757.
dc.identifier.citedreferenceEnglund M, Guermazi A, Lohmander LS. 2009. The meniscus in knee osteoarthritis. Rheum Dis Clin North Am 35: 579 â 590.
dc.identifier.citedreferenceKellgren JH, Lawrence JS. 1957. Radiological assessment of osteoâ arthrosis. Ann Rheum Dis 16: 494 â 502.
dc.identifier.citedreferenceMuehleman C, Bareither D, Huch K, et al. 1997. Prevalence of degenerative morphological changes in the joints of the lower extremity. Osteoarthritis Cartilage 5: 23 â 37.
dc.identifier.citedreferenceForster R, Schubel A, Breitfeld D, et al. 1999. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99: 23 â 33.
dc.identifier.citedreferenceGlasson SS, Blanchet TJ, Morris EA. 2007. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthritis Cartilage 15: 1061 â 1069.
dc.identifier.citedreferenceGerwin N, Bendele AM, Glasson S, et al. 2010. The OARSI histopathology initiative â recommendations for histological assessments of osteoarthritis in the rat. Osteoarthritis Cartilage 18: S24 â S34.
dc.identifier.citedreferenceMiller RE, Tran PB, Ishihara S, et al. 2016. Therapeutic effects of an antiâ ADAMTSâ 5 antibody on joint damage and mechanical allodynia in a murine model of osteoarthritis. Osteoarthritis Cartilage 24: 299 â 306.
dc.identifier.citedreferenceGordon S, Taylor PR. 2005. Monocyte and macrophage heterogeneity. Nat Rev Immunol 5: 953 â 964.
dc.identifier.citedreferenceVan de Weerd HA, Bulthuis RJ, Bergman AF, et al. 2001. Validation of a new system for the automatic registration of behaviour in mice and rats. Behav Processes 53: 11 â 20.
dc.identifier.citedreferenceInglis JJ, McNamee KE, Chia SL, et al. 2008. Regulation of pain sensitivity in experimental osteoarthritis by the endogenous peripheral opioid system. Arthritis Rheum 58: 3110 â 3119.
dc.identifier.citedreferenceLoeser RF, Olex AL, McNulty MA, et al. 2013. Disease progression and phasic changes in gene expression in a mouse model of osteoarthritis. PLoS ONE 8: e54633.
dc.identifier.citedreferenceRadin EL, Martin RB, Burr DB, et al. 1984. Effects of mechanical loading on the tissues of the rabbit knee. J Orthop Res 2: 221 â 234.
dc.identifier.citedreferenceRadin EL, Rose RM. 1986. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res 213: 34 â 40.
dc.identifier.citedreferenceWu DD, Burr DB, Boyd RD, et al. 1990. Bone and cartilage changes following experimental varus or valgus tibial angulation. J Orthop Res 8: 572 â 585.
dc.identifier.citedreferenceHannan MT, Felson DT, Pincus T. 2000. Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee. J Rheumatol 27: 1513 â 1517.
dc.identifier.citedreferenceMalfait AM, Little CB. 2015. On the predictive utility of animal models of osteoarthritis. Arthritis Res Ther 17: 225.
dc.identifier.citedreferenceMiller RE, Tran PB, Das R, et al. 2012. CCR2 chemokine receptor signaling mediates pain in experimental osteoarthritis. Proc Natl Acad Sci USA 109: 20602 â 20607.
dc.identifier.citedreferenceKurtz SM, Lau E, Ong K, et al. 2009. Future young patient demand for primary and revision joint replacement: national projections from 2010 to 2030. Clin Orthop Relat Res® 467: 2606 â 2612.
dc.identifier.citedreferenceMalfait Aâ M, Little CB. 2015. On the predictive utility of animal models of osteoarthritis. Arthritis Res Ther 17: 225.
dc.identifier.citedreferenceKim B, Choi B, Jin L, et al. 2013. Comparison between subchondral bone change and cartilage degeneration in collagenaseâ and DMMâ induced osteoarthritis (OA) models in mice. Tissue Eng Regen Med 10: 211 â 217.
dc.identifier.citedreferenceSharma AR, Jagga S, Lee Sâ S, et al. 2013. Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis. Int J Mol Sci 14: 19805 â 19830.
dc.identifier.citedreferenceTakebe K, Rai MF, Schmidt EJ, et al. 2015. The chemokine receptor CCR5 plays a role in postâ traumatic cartilage loss in mice, but does not affect synovium and bone. Osteoarthritis Cartilage 23: 454 â 461.
dc.identifier.citedreferenceBotter SM, Glasson SS, Hopkins B, et al. 2009. ADAMTS5â /â mice have less subchondral bone changes after induction of osteoarthritis through surgical instability: implications for a link between cartilage and subchondral bone changes. Osteoarthritis Cartilage 17: 636 â 645.
dc.identifier.citedreferenceBotter SM, van Osch GJ, Waarsing JH, et al. 2006. Quantification of subchondral bone changes in a murine osteoarthritis model using microâ CT. Biorheology 43: 379 â 388.
dc.identifier.citedreferenceBruhl H, Mack M, Niedermeier M, et al. 2008. Functional expression of the chemokine receptor CCR7 on fibroblastâ like synoviocytes. Rheumatology (Oxford) 47: 1771 â 1774.
dc.identifier.citedreferenceForster R, Davalosâ Misslitz AC, Rot A. 2008. CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 8: 362 â 371.
dc.identifier.citedreferencePickens SR, Chamberlain ND, Volin MV, et al. 2012. Role of the CCL21 and CCR7 pathways in rheumatoid arthritis angiogenesis. Arthritis Rheum 64: 2471 â 2481.
dc.identifier.citedreferenceScanzello CR, Plaas A, Crow MK. 2008. Innate immune system activation in osteoarthritis: is osteoarthritis a chronic wound ? Curr Opin Rheumatol 20: 565 â 572.
dc.identifier.citedreferenceHootman JM, Helmick CG. 2006. Projections of US prevalence of arthritis and associated activity limitations. Arthritis Rheum 54: 226 â 229.
dc.identifier.citedreferenceKinds MB, Welsing PMJ, Vignon EP, et al. 2011. A systematic review of the association between radiographic and clinical osteoarthritis of hip and knee. Osteoarthritis Cartilage 19: 768 â 778.
dc.identifier.citedreferenceScanzello CR, McKeon B, Swaim BH, et al. 2011. Synovial inflammation in patients undergoing arthroscopic meniscectomy: molecular characterization and relationship to symptoms. Arthritis Rheum 63: 391 â 400.
dc.identifier.citedreferenceRoemer FW, Guermazi A, Felson DT, et al. 2011. Presence of MRIâ detected joint effusion and synovitis increases the risk of cartilage loss in knees without osteoarthritis at 30â month followâ up: the MOST study. Ann Rheum Dis 70: 1804 â 1809.
dc.identifier.citedreferenceScanzello CR, Albert AS, DiCarlo E, et al. 2013. The influence of synovial inflammation and hyperplasia on symptomatic outcomes up to 2 years postâ operatively in patients undergoing partial meniscectomy. Osteoarthritis Cartilage 21: 1392 â 1399.
dc.identifier.citedreferenceAyral X, Pickering EH, Woodworth TG, et al. 2005. Synovitis: a potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis â results of a 1 year longitudinal arthroscopic study in 422 patients. Osteoarthritis Cartilage 13: 361 â 367.
dc.identifier.citedreferenceTorres L, Dunlop DD, Peterfy C, et al. 2006. The relationship between specific tissue lesions and pain severity in persons with knee osteoarthritis. Osteoarthritis Cartilage 14: 1033 â 1040.
dc.identifier.citedreferenceKrenn V, Morawietz L, Haupl T, et al. 2002. Grading of chronic synovitisâ a histopathological grading system for molecular and diagnostic pathology. Pathol Res Pract 198: 317 â 325.
dc.identifier.citedreferenceOehler S, Neureiter D, Meyerâ Scholten C, et al. 2002. Subtyping of osteoarthritic synoviopathy. Clin Exp Rheumatol 20: 633 â 640.
dc.identifier.citedreferencePearle AD, Scanzello CR, George S, et al. 2007. Elevated highâ sensitivity Câ reactive protein levels are associated with local inflammatory findings in patients with osteoarthritis. Osteoarthritis Cartilage 15: 516 â 523.
dc.identifier.citedreferenceNeogi T, Guermazi A, Roemer F, et al. 2016. Association of joint inflammation with pain sensitization in knee osteoarthritis: the multicenter osteoarthritis study. Arthritis Rheumatol 68: 654 â 661.
dc.identifier.citedreferenceBaker K, Grainger A, Niu J, et al. 2010. Relation of synovitis to knee pain using contrastâ enhanced MRIs. Ann Rheum Dis 69: 1779 â 1783.
dc.identifier.citedreferenceStoppiello LA, Mapp PI, Wilson D, et al. 2014. Structural associations of symptomatic knee osteoarthritis. Arthritis Rheumatol 66: 3018 â 3027.
dc.identifier.citedreferenceSallusto F, Lenig D, Forster R, et al. 1999. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401: 708 â 712.
dc.identifier.citedreferenceReif K, Ekland EH, Ohl L, et al. 2002. Balanced responsiveness to chemoattractants from adjacent zones determines Bâ cell position. Nature 416: 94 â 99.
dc.identifier.citedreferenceOhl L, Mohaupt M, Czeloth N, et al. 2004. CCR7 governs skin dendritic cell migration under inflammatory and steadyâ state conditions. Immunity 21: 279 â 288.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.