Show simple item record

Midlatitude Plasma Bubbles Over China and Adjacent Areas During a Magnetic Storm on 8 September 2017

dc.contributor.authorAa, Ercha
dc.contributor.authorHuang, Wengeng
dc.contributor.authorLiu, Siqing
dc.contributor.authorRidley, Aaron
dc.contributor.authorZou, Shasha
dc.contributor.authorShi, Liqin
dc.contributor.authorChen, Yanhong
dc.contributor.authorShen, Hua
dc.contributor.authorYuan, Tianjiao
dc.contributor.authorLi, Jianyong
dc.contributor.authorWang, Tan
dc.date.accessioned2018-05-15T20:14:54Z
dc.date.available2019-05-13T14:45:28Zen
dc.date.issued2018-03
dc.identifier.citationAa, Ercha; Huang, Wengeng; Liu, Siqing; Ridley, Aaron; Zou, Shasha; Shi, Liqin; Chen, Yanhong; Shen, Hua; Yuan, Tianjiao; Li, Jianyong; Wang, Tan (2018). "Midlatitude Plasma Bubbles Over China and Adjacent Areas During a Magnetic Storm on 8 September 2017." Space Weather 16(3): 321-331.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/143723
dc.description.abstractThis paper presents observations of postsunset super plasma bubbles over China and adjacent areas during the second main phase of a storm on 8 September 2017. The signatures of the plasma bubbles can be seen or deduced from (1) deep field‐aligned total electron content depletions embedded in regional ionospheric maps derived from dense Global Navigation Satellite System networks, (2) significant equatorial and midlatitudinal plasma bite‐outs in electron density measurements on board Swarm satellites, and (3) enhancements of ionosonde virtual height and scintillation in local evening associated with strong southward interplanetary magnetic field. The bubbles/depletions covered a broad area mainly within 20°–45°N and 80°–110°E with bifurcated structures and persisted for nearly 5 hr (∼13–18 UT). One prominent feature is that the bubbles extended remarkably along the magnetic field lines in the form of depleted flux tubes, reaching up to midlatitude of around 50°N (magnetic latitude: 45.5°N) that maps to an altitude of 6,600 km over the magnetic equator. The maximum upward drift speed of the bubbles over the magnetic equator was about 700 m/s and gradually decreased with altitude and time. The possible triggering mechanism of the plasma bubbles was estimated to be storm time eastward prompt penetration electric field, while the traveling ionospheric disturbance could play a role in facilitating the latitudinal extension of the depletions.Key PointsPostsunset midlatitude plasma bubbles were observed over China and adjacent areas using GNSS TEC, Swarm Ne, and ionosonde dataThe plasma bubbles were triggered by PPEF and TID in equatorial regions and extended along the magnetic field lines to 50°N (45.5 MLAT)Plasma bubbles might reach an altitude of 6,600 km over the magnetic equator with the upper limit of upward drift speed being around 700 m/s
dc.publisherWiley Periodicals, Inc.
dc.subject.otherPPEF
dc.subject.otherTID
dc.subject.otherplasma bubbles
dc.subject.othermidlatitude ionosphere
dc.subject.othergeomagnetic storm
dc.titleMidlatitude Plasma Bubbles Over China and Adjacent Areas During a Magnetic Storm on 8 September 2017
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143723/1/swe20573.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143723/2/swe20573_am.pdf
dc.identifier.doi10.1002/2017SW001776
dc.identifier.sourceSpace Weather
dc.identifier.citedreferenceMendillo, M., Zesta, E., Shodhan, S., Sultan, P. J., Doe, R., Sahai, Y., & Baumgardner, J. ( 2005 ). Observations and modeling of the coupled latitude‐altitude patterns of equatorial plasma depletions. Journal of Geophysical Research, 110, A09303. https://doi.org/10.1029/2005JA011157
dc.identifier.citedreferenceHuang, C.‐S., Foster, J. C., & Kelley, M. C. ( 2005 ). Long‐duration penetration of the interplanetary electric field to the low‐latitude ionosphere during the main phase of magnetic storms. Journal of Geophysical Research, 110, A11309. https://doi.org/10.1029/2005JA011202
dc.identifier.citedreferenceHuang, C.‐S., Foster, J. C., & Sahai, Y. ( 2007 ). Significant depletions of the ionospheric plasma density at middle latitudes: A possible signature of equatorial spread F bubbles near the plasmapause. Journal of Geophysical Research, 112, A05315. https://doi.org/10.1029/2007JA012307
dc.identifier.citedreferenceHuang, C.‐S., Rich, F. J., & Burke, W. J. ( 2010 ). Storm time electric fields in the equatorial ionosphere observed near the dusk meridian. Journal of Geophysical Research, 115, A08313. https://doi.org/10.1029/2009JA015150
dc.identifier.citedreferenceKatamzi‐Joseph, Z. T., Habarulema, J. B., & Hernández‐Pajares, M. ( 2017 ). Midlatitude postsunset plasma bubbles observed over europe during intense storms in April 2000 and 2001. Space Weather, 15, 1177 – 1190. https://doi.org/10.1002/2017SW001674
dc.identifier.citedreferenceKelley, M. C., Haerendel, G., Kappler, H., Valenzuela, A., Balsley, B. B., Carter, D. A., et al. ( 1976 ). Evidence for a Rayleigh‐Taylor type instability and upwelling of depleted density regions during equatorial spread F. Geophysical Research Letters, 3, 448 – 450. https://doi.org/10.1029/GL003i008p00448
dc.identifier.citedreferenceKelley, M. C., Makela, J. J., Ledvina, B. M., & Kintner, P. M. ( 2002 ). Observations of equatorial spread‐F from Haleakala, Hawaii. Geophysical Research Letters, 29, 2003. https://doi.org/10.1029/2002GL015509
dc.identifier.citedreferenceKelley, M. C., Makela, J. J., Paxton, L. J., Kamalabadi, F., Comberiate, J. M., & Kil, H. ( 2003 ). The first coordinated ground‐ and space‐based optical observations of equatorial plasma bubbles. Geophysical Research Letters, 30, 1766. https://doi.org/10.1029/2003GL017301
dc.identifier.citedreferenceKil, H. ( 2015 ). The morphology of equatorial plasma bubbles—A review. Journal of Astronomy and Space Sciences, 32, 13 – 19. https://doi.org/10.5140/JASS.2015.32.1.13
dc.identifier.citedreferenceKil, H., Paxton, L. J., Su, S.‐Y., Zhang, Y., & Yeh, H. ( 2006 ). Characteristics of the storm‐induced big bubbles (SIBBs). Journal of Geophysical Research, 111, A10308. https://doi.org/10.1029/2006JA011743
dc.identifier.citedreferenceLi, G., Ning, B., Liu, L., Wan, W., & Liu, J. Y. ( 2009 ). Effect of magnetic activity on plasma bubbles over equatorial and low‐latitude regions in East Asia. Annales de Geophysique, 27, 303 – 312. https://doi.org/10.5194/angeo-27-303-2009
dc.identifier.citedreferenceLi, G., Ning, B., Zhao, B., Liu, L., Wan, W., Ding, F., et al. ( 2009 ). Characterizing the 10 November 2004 storm‐time middle‐latitude plasma bubble event in Southeast Asia using multi‐instrument observations. Journal of Geophysical Research, 114, A07304. https://doi.org/10.1029/2009JA014057
dc.identifier.citedreferenceMa, G., & Maruyama, T. ( 2006 ). A super bubble detected by dense GPS network at east Asian longitudes. Geophysical Research Letters, 33, L21103. https://doi.org/10.1029/2006GL027512
dc.identifier.citedreferenceMakela, J. J., & Kelley, M. C. ( 2003 ). Field‐aligned 777.4‐nm composite airglow images of equatorial plasma depletions. Geophysical Research Letters, 30, 1442. https://doi.org/10.1029/2003GL017106
dc.identifier.citedreferenceMendillo, M., Hickey, D., Martinis, C., Wroten, J., & Baumgardner, J. ( 2018 ). Space weather nowcasting for area‐denied locations: Testing all‐sky imaging applications at geomagnetic conjugate points. Space Weather, 16, 47 – 56. https://doi.org/10.1002/2017SW001741
dc.identifier.citedreferenceOtt, E. ( 1978 ). Theory of Rayleigh‐Taylor bubbles in the equatorial ionosphere. Journal of Geophysical Research, 83, 2066 – 2070. https://doi.org/10.1029/JA083iA05p02066
dc.identifier.citedreferencePerkins, F. ( 1973 ). Spread F and ionospheric currents. Journal of Geophysical Research, 78, 218 – 226. https://doi.org/10.1029/JA078i001p00218
dc.identifier.citedreferencePi, X., Mannucci, A. J., Lindqwister, U. J., & Ho, C. M. ( 1997 ). Monitoring of global ionospheric irregularities using the Worldwide GPS Network. Geophysical Research Letters, 24, 2283 – 2286. https://doi.org/10.1029/97GL02273
dc.identifier.citedreferenceRamsingh, S., Sreekumar, S., Banola, S., Emperumal, K., Tiwari, P., & Kumar, B. S. ( 2015 ). Sripathi low‐latitude ionosphere response to super geomagnetic storm of 17/18 March 2015: Results from a chain of ground‐based observations over Indian sector. Journal of Geophysical Research: Space Physics, 120, 10,864 – 10,882. https://doi.org/10.1002/2015JA021509
dc.identifier.citedreferenceRetterer, J. M., & Roddy, P. ( 2014 ). Faith in a seed: On the origins of equatorial plasma bubbles. Annales de Geophysique, 32, 485 – 498. https://doi.org/10.5194/angeo-32-485-2014
dc.identifier.citedreferenceScherliess, L., & Fejer, B. G. ( 1997 ). Storm time dependence of equatorial disturbance dynamo zonal electric fields. Journal of Geophysical Research, 102, 24,037 – 24,046. https://doi.org/10.1029/97JA02165
dc.identifier.citedreferenceShiokawa, K., Otsuka, Y., Ogawa, T., Balan, N., Igarashi, K., Ridley, A. J., et al. ( 2002 ). A large‐scale traveling ionospheric disturbance during the magnetic storm of 15 September 1999. Journal of Geophysical Research, 107, 1088. https://doi.org/10.1029/2001JA000245
dc.identifier.citedreferenceShiokawa, K., Ihara, C., Otsuka, Y., & Ogawa, T. ( 2003 ). Statistical study of nighttime medium‐scale traveling ionospheric disturbances using midlatitude airglow images. Journal of Geophysical Research, 108 ( A1 ), 1052. https://doi.org/10.1029/2002JA009491
dc.identifier.citedreferenceTsugawa, T., Otsuka, Y., Coster, A. J., & Saito, A. ( 2007 ). Medium‐scale traveling ionospheric disturbances detected with dense and wide TEC maps over North America. Geophysical Research Letters, 34, L22101. https://doi.org/10.1029/2007GL031663
dc.identifier.citedreferenceTsunoda, R. T. ( 1980 ). Magnetic‐field‐aligned characteristics of plasma bubbles in the nighttime equatorial ionosphere. Journal of Atmospheric and Terrestrial Physics, 42, 743 – 752. https://doi.org/10.1016/0021-9169(80) 90057-4
dc.identifier.citedreferenceTsunoda, R. T., Livingston, R. C., McClure, J. P., & Hanson, W. B. ( 1982 ). Equatorial plasma bubbles—Vertically elongated wedges from the bottomside F layer. Journal of Geophysical Research, 87, 9171 – 9180. https://doi.org/10.1029/JA087iA11p09171
dc.identifier.citedreferenceTulasi Ram, S., Kumar, S., Su, S.‐Y., Veenadhari, B., & Ravindran, S. ( 2015 ). The influence of Corotating Interaction Region (CIR) driven geomagnetic storms on the development of equatorial plasma bubbles (EPBs) over wide range of longitudes. Advances in Space Research, 55, 535 – 544. https://doi.org/10.1016/j.asr.2014.10.013
dc.identifier.citedreferenceTulasi Ram, S., Rama Rao, P. V. S., Prasad, D. S. V. V. D., Niranjan, K., Gopi Krishna, S., Sridharan, R., & Ravindran, S. ( 2008 ). Local time dependent response of postsunset ESF during geomagnetic storms. Journal of Geophysical Research, 113, A07310. https://doi.org/10.1029/2007JA012922
dc.identifier.citedreferenceWoodman, R. F., & La Hoz, C. ( 1976 ). Radar observations of F region equatorial irregularities. Journal of Geophysical Research, 81 ( 31 ), 5447 – 5466. https://doi.org/10.1029/JA081i031p05447
dc.identifier.citedreferenceAa, E., Huang, W., Liu, S., Shi, L., Gong, J., Chen, Y., & Shen, H. ( 2015 ). A regional ionospheric TEC mapping technique over China and adjacent areas: GNSS data processing and DINEOF analysis. Science China Information Sciences, 58 ( 10 ), 1 – 11. https://doi.org/10.1007/s11432-015-5399-2
dc.identifier.citedreferenceAbadi, P., Otsuka, Y., & Tsugawa, T. ( 2015 ). Effects of pre‐reversal enhancement of E B drift on the latitudinal extension of plasma bubble in Southeast Asia. Earth Planets, and Space, 67, 74. https://doi.org/10.1186/s40623-015-0246-7
dc.identifier.citedreferenceAbdu, M. A. ( 2012 ). Equatorial spread F/plasma bubble irregularities under storm time disturbance electric fields. Journal of Atmospheric and Terrestrial Physics, 75, 44 – 56. https://doi.org/10.1016/j.jastp.2011.04.024
dc.identifier.citedreferenceAbdu, M. A., Batista, I. S., Takahashi, H., MacDougall, J., Sobral, J. H., Medeiros, A. F., & Trivedi, N. B. ( 2003 ). Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: A case study in Brazilian sector. Journal of Geophysical Research, 108, 1449. https://doi.org/10.1029/2002JA009721
dc.identifier.citedreferenceAbdu, M. A., Sastri, J. H., MacDougall, J., Batista, I. S., & Sobral, J. H. A. ( 1997 ). Equatorial disturbance dynamo electric field longitudinal structure and spread F: A case study from GUAR/EITS Campaigns. Geophysical Research Letters, 24, 1707 – 1710. https://doi.org/10.1029/97GL01465
dc.identifier.citedreferenceBasu, S., Basu, S., Groves, K. M., MacKenzie, E., Keskinen, M. J., & Rich, F. J. ( 2005 ). Near‐simultaneous plasma structuring in the midlatitude and equatorial ionosphere during magnetic superstorms. Geophysical Research Letters, 32, L12S05. https://doi.org/10.1029/2004GL021678
dc.identifier.citedreferenceBasu, S., Basu, S., Groves, K. M., Yeh, H.‐C., Su, S.‐Y., Rich, F. J., et al. ( 2001 ). Response of the equatorial ionosphere in the South Atlantic Region to the Great Magnetic Storm of July 15, 2000. Geophysical Research Letters, 28, 3577 – 3580. https://doi.org/10.1029/2001GL013259
dc.identifier.citedreferenceBasu, S., Basu, S., Rich, F. J., Groves, K. M., MacKenzie, E., Coker, C., et al. ( 2007 ). Response of the equatorial ionosphere at dusk to penetration electric fields during intense magnetic storms. Journal of Geophysical Research, 112, A08308. https://doi.org/10.1029/2006JA012192
dc.identifier.citedreferenceBhattacharyya, A., Basu, S., Groves, K. M., Valladares, C. E., & Sheehan, R. ( 2001 ). Dynamics of equatorial F region irregularities from spaced receiver scintillation observations. Geophysical Research Letters, 28, 119 – 122. https://doi.org/10.1029/2000GL012288
dc.identifier.citedreferenceCarter, B. A., Yizengaw, E., Pradipta, R., Retterer, J. M., Groves, K., Valladares, C., et al. ( 2016 ). Global equatorial plasma bubble occurrence during the 2015 St. Patrick’s Day storm. Journal of Geophysical Research: Space Physics, 121, 894 – 905. https://doi.org/10.1002/2015JA022194
dc.identifier.citedreferenceChakrabarty, D., Rout, D., Sekar, R., Narayanan, R., Reeves, G. D., Pant, T. K., et al. ( 2015 ). Three different types of electric field disturbances affecting equatorial ionosphere during a long‐duration prompt penetration event. Journal of Geophysical Research: Space Physics, 120, 4993 – 5008. https://doi.org/10.1002/2014JA020759
dc.identifier.citedreferenceCherniak, I., Krankowski, A., & Zakharenkova, I. ( 2014 ). Observation of the ionospheric irregularities over the Northern Hemisphere: Methodology and service. Radio Science, 49, 653 – 662. https://doi.org/10.1002/2014RS005433
dc.identifier.citedreferenceCherniak, I., & Zakharenkova, I. ( 2016 ). First observations of super plasma bubbles in Europe. Geophysical Research Letters, 43, 11,137 – 11,145. https://doi.org/10.1002/2016GL071421
dc.identifier.citedreferenceFarley, D. T., Bonelli, E., Fejer, B. G., & Larsen, M. F. ( 1986 ). The prereversal enhancement of the zonal electric field in the equatorial ionosphere. Journal of Geophysical Research, 91, 13,723 – 13,728. https://doi.org/10.1029/JA091iA12p13723
dc.identifier.citedreferenceFejer, B. G. ( 1991 ). Low latitude electrodynamic plasma drifts—A review. Journal of Atmospheric and Terrestrial Physics, 53, 677 – 693. https://doi.org/10.1016/0021-9169(91)90121-M
dc.identifier.citedreferenceFejer, B. G., Jensen, J. W., & Su, S.‐Y. ( 2008 ). Seasonal and longitudinal dependence of equatorial disturbance vertical plasma drifts. Geophysical Research Letters, 35, L20106. https://doi.org/10.1029/2008GL035584
dc.identifier.citedreferenceFejer, B. G., Scherliess, L., & de Paula, E. R. ( 1999 ). Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. Journal of Geophysical Research, 104, 19,859 – 19,870. https://doi.org/10.1029/1999JA900271
dc.identifier.citedreferenceFoster, J. C., & Rich, F. J. ( 1998 ). Prompt midlatitude electric field effects during severe geomagnetic storms. Journal of Geophysical Research, 103, 26,367 – 26,372. https://doi.org/10.1029/97JA03057
dc.identifier.citedreferenceHorvath, I., & Lovell, B. C. ( 2013 ). Equatorial westward electrojet impacting equatorial ionization anomaly development during the 6 April 2000 superstorm. Journal of Geophysical Research: Space Physics, 118, 7398 – 7409. https://doi.org/10.1002/2013JA019311
dc.identifier.citedreferenceHuang, C.‐S. ( 2008 ). Continuous penetration of the interplanetary electric field to the equatorial ionosphere over eight hours during intense geomagnetic storms. Journal of Geophysical Research, 113, A11305. https://doi.org/10.1029/2008JA013588
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.