Show simple item record

Protection of 2′‐Hydroxy Functions of Ribonucleosides

dc.contributor.authorReese, Colin B.
dc.date.accessioned2018-05-15T20:14:59Z
dc.date.available2018-05-15T20:14:59Z
dc.date.issued2000-02
dc.identifier.citationReese, Colin B. (2000). "Protection of 2′‐Hydroxy Functions of Ribonucleosides." Current Protocols in Nucleic Acid Chemistry 00(1): 2.2.1-2.2.24.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/143728
dc.description.abstractThe main purpose of this article is to discuss 2′‐protection in the context of effective oligoribonucleotide synthesis. Emphasis is placed on the 2′‐protecting groups of choice in the synthesis of oligo‐and polyribonucleotides, and the requirements that a protective group must satisfy to become the 2′‐hydroxyl‐protecting group of choice. Finally, the unit discusses the issue of 2′‐O‐acyl and 2′‐O‐silyl group migration to the 3′‐hydroxy function of ribonucleosides during protection, along with the consequences of the conditions used for their removal on the stability of internucleotide linkages.
dc.publisherOxford University Press
dc.publisherWiley Periodicals, Inc.
dc.titleProtection of 2′‐Hydroxy Functions of Ribonucleosides
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143728/1/cpnc0202.pdf
dc.identifier.doi10.1002/0471142700.nc0202s00
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceSmith, M., Rammler, D.H., Goldberg, I.H., and Khorana, H.G. 1962. Studies on polynucleotides XIV. Specific synthesis of the C‐3′‐C‐5′ inter ribonucleotide linkage. Synthesis of uridylyl‐(3′→︀5′)‐uridine and uridylyl‐(3′→︀5′)‐adenosine. J. Am. Chem. Soc. 84: 430 ‐ 440.
dc.identifier.citedreferenceSmrt, J. and Šorm, F. 1962. Oligonucleotidic compounds I. The direct blocking of 2′‐hydroxyl in ribonucleoside‐3′ phosphates. The synthesis of 6‐azauridylyl‐(5′→︀3′)‐uridine. Coll. Czech. Chem. Commun. 27: 73 ‐ 86.
dc.identifier.citedreferenceSonveaux, E. 1994. Protecting groups in oligonucleotide synthesis. In Protocols for Oligonucleotide Conjugates: Synthesis and Analytical Techniques ( S. Agrawal, ed.) pp. 1 ‐ 71. Humana Press, Totowa, N.J.
dc.identifier.citedreferenceSproat, B.S. and Gait, M.J. 1984. Solid‐phase synthesis of oligodeoxyribonucleotides by the phosphotriester method. In Oligonucleotide Synthesis. A Practical Approach ( M.J. Gait, ed.) pp. 83 ‐ 115. IRL Press, Oxford.
dc.identifier.citedreferenceSproat, B.S., Beijer, B., Groetli, M., Ryder, U., Morand, K.L., and Lamond, A.I. 1994. Novel solid‐phase synthesis of branched oligoribonucleotides including a substrate for RNA debranching enzyme. J. Chem. Soc. Perkin Trans. 1 419 ‐ 431.
dc.identifier.citedreferenceSproat, B.S., Calonna, F., Mullah, B., Tsou, D., Andrus, A., Hampel, A., and Vinayak, R. 1995. An efficient method for the isolation and purification of oligoribonucleotides. Nucleosides Nucleotides 14: 255 ‐ 273.
dc.identifier.citedreferenceStawinski, J., Strömberg, R., Thelin, M., and Westman, E. 1988. Studies on the t ‐butyldimethylsilyl group as 2′‐O‐protection in oligoribonucleotide synthesis via the H‐phosphonate approach. Nucl. Acids Res. 16: 9285 ‐ 9298.
dc.identifier.citedreferenceStork, G. and Hudrlik, P.F. 1968. Isolation of ketone enolates as trialkylsilyl ethers. J. Am.Chem. Soc. 90: 4462 ‐ 4464.
dc.identifier.citedreferenceTakaku, H. and Kamaike, K. 1982. Synthesis of oligoribonucleotides using 4‐methoxybenzyl group as a new protecting group of the 2′‐hydroxyl group of adenosine. Chem. Lett. 189 ‐ 192.
dc.identifier.citedreferenceTakaku, H., Kamaike, K., and Tsuchiya, H. 1984. Synthesis of ribooligonucleotides using the 4‐methoxybenzyl group as a new protecting group for the 2′‐hydroxyl group. J. Org. Chem. 49: 51 ‐ 56.
dc.identifier.citedreferenceTakaku, H., Ito, T., and Iwai, K. 1986. Use of the 3,4‐dimethoxybenzyl group as a protecting group for the 2′‐hydroxyl group in the synthesis of oligoribonucleotides. Chem. Lett. 1005 ‐ 1008.
dc.identifier.citedreferenceTanaka, T., Fujino, K., Tamatsukuri, S., and Ikehara, M. 1986. Synthesis of oligoribonucleotides via the phosphite triester approach on a solid support. Chem. Pharm. Bull. Jpn. 34: 4126 ‐ 4132.
dc.identifier.citedreferenceTanimura, H. and Imada, T. 1990. The utility of 2′‐Thp group in the synthesis of the relatively long RNA fragments on the solid support. Chem. Lett. 2081 ‐ 2084.
dc.identifier.citedreferenceTanimura, H., Mieda, M., Fukazawa, T., Sekine, M., and Hata, T. 1989. Chemical synthesis of the 24 RNA fragments corresponding to hop stunt viroid. Nucl. Acids Res. 17: 8135 ‐ 8147.
dc.identifier.citedreferenceUsman, N., Ogilvie, K.K., Jiang, M.Y., and Cedergren, R.J. 1987. Automated chemical synthesis of long oligoribonucleotides using 2′‐ O ‐silylated ribonucleoside 3′‐phosphoramidites on a controlled pore glass support: Synthesis of a 43‐nucleotide sequence similar to the 3′‐half molecule of Escherichia coli formylmethionine tRNA. J. Am. Chem. Soc. 109: 7845 ‐ 7854.
dc.identifier.citedreferencevan Boom, J.H. and Burgers, P.M.J. 1976. Use of levulinic acid in the protection of oligonucleotides via the modified phosphotriester method: Synthesis of the decaribonucleotide UAUAUAUAUA. Tetrahedron Lett. 4875 ‐ 4878.
dc.identifier.citedreferencevan Boom, J.H., van Deursen, P., Meeuse, J., and Reese, C.B. 1972. Two sulphur‐containing protecting groups for alcoholic hydroxyl functions. J. Chem. Soc. Chem. Commun. 766 ‐ 767.
dc.identifier.citedreferenceVinayak, R., Anderson, P., McCollum, C., and Hampel, A. 1992. Chemical synthesis of RNA using fast oligonucleotide deprotection chemistry. Nucl. Acids Res. 20: 1265 ‐ 1269.
dc.identifier.citedreferenceWestman, E. and Strömberg, R. 1994. Removal of t‐butyldimethylsilyl protection in RNA synthesis. Triethylamine trihydrofluoride (TEA,3HF) is a more reliable alternative to tetrabutylammonium fluoride (TBAF). Nucl. Acids Res. 22: 2430 ‐ 2431.
dc.identifier.citedreferenceWincott, F., DiRenzo, A., Shaffer, C., Grimm, S., Tracz, D., Workman, C., Sweedler, D., Gonzalez, C., Scaringe, S., and Usman, N. 1995. Synthesis, deprotection, analysis and purification of RNA and ribozymes. Nucl. Acids Res. 23: 2677 ‐ 2684.
dc.identifier.citedreferenceGriffin, B.E., Jarman, M., and Reese, C.B. 1968. The synthesis of oligoribonucleotides. IV. Preparation of dinucleoside phosphates from 2′,5′‐protected ribonucleoside derivatives. Tetrahedron 24: 639 ‐ 662.
dc.identifier.citedreferenceHakimelahi, G.H., Proba, Z.A., and Ogilvie, K.K. 1982. New catalysts and procedures for the dimethoxytritylation and selective silylation of ribonucleosides. Can. J. Chem. 60: 1106 ‐ 1113.
dc.identifier.citedreferenceBeaucage, S.L. and Caruthers, M.H. 1996. The chemical synthesis of DNA/RNA. In Bioorganic Chemistry: Nucleic Acids ( S.M. Hecht, ed.) pp. 36 ‐ 74. Oxford University Press, New York and Oxford.
dc.identifier.citedreferenceBeaucage, S.L. and Iyer, R.P. 1992. Advances in the synthesis of oligonucleotides by the phosphoramidite approach. Tetrahedron 48: 2223 ‐ 2311.
dc.identifier.citedreferenceBeijer, B., Sulston, I., Sproat, B.S., Rider, P., Lamond, A.I., and Neuner, P. 1990. Synthesis and applicatons of oligoribonucleotides with selected 2′‐ O ‐methylation using the 2′‐ O ‐[1‐(2‐ fluorophenyl)‐4‐methoxypiperidin‐4‐yl] protecting group. Nucl. Acids Res. 18: 5143 ‐ 5151.
dc.identifier.citedreferenceBrown, T. and Brown, D.J.S. 1991. Modern machine‐aided methods of oligoribonucleotide synthesis. In Oligonucleotides and Analogues. A Practical Approach ( F. Eckstein, ed.) pp. 1 ‐ 24. IRL Press, Oxford.
dc.identifier.citedreferenceBrown, J.M., Christodoulou, C., Jones, S.S., Modak, A.S., Reese, C.B., Sibanda, S., and Ubasawa, A. 1989a. Synthesis of the 3′‐terminal half of yeast alanine transfer ribonucleic acid (tRNA Ala ) by the phosphotriester approach in solution. Part 1. Preparation of nucleoside building blocks. J. Chem. Soc. Perkin Trans. 1 1735 ‐ 1750.
dc.identifier.citedreferenceBrown, J.M., Christodoulou, C., Modak, A.S., Reese, C.B., and Serafinowska, H.T. 1989b. Synthesis of the 3′‐terminal half of yeast alanine transfer ribonucleic acid (tRNA Ala ) by the phosphotriester approach in solution. Part 2. J. Chem. Soc. Perkin Trans. 1 1751 ‐ 1767.
dc.identifier.citedreferenceCapaldi, D.C. and Reese, C.B. 1994. Use of the 1‐(2‐fluorophenyl)‐4‐methoxypiperidin‐4‐yl (Fpmp) and related protecting groups in oligoribonucleotide synthesis: Stability of internucleotide linkages to aqueous acid. Nucl. Acids Res. 22: 2209 ‐ 2216.
dc.identifier.citedreferenceChaix, C., Molko, D., and Téoule, R. 1989. The use of labile base protecting groups in oligoribonucleotide synthesis. Tetrahedron Lett. 30: 71 ‐ 74.
dc.identifier.citedreferenceChattopadhyaya, J.B. and Reese, C.B. 1978. The 9‐phenylxanthen‐9‐yl protecting group. J.Chem. Soc., Chem. Commun. 639 ‐ 640.
dc.identifier.citedreferenceChattopadhyaya, J.B., Reese, C.B., and Todd, A.H. 1979. 2‐Dibromobenzoyl: An acyl protecting group removable under exceptionally mild conditions. J. Chem. Soc., Chem. Commun. 987 ‐ 988.
dc.identifier.citedreferenceChristodoulou, C., Agrawal, S., and Gait, M.J. 1986. Incompatibility of acid‐labile 2′ and 5′ protecting groups for solid‐phase synthesis of oligoribonucleotides. Tetrahedron Lett. 27: 1521 ‐ 1522.
dc.identifier.citedreferenceCorey, E.J. and Venkateswarlu, A. 1972. Protection of hydroxyl groups as tert‐butyldimethylsilyl derivatives. J. Am. Chem. Soc. 94: 6190 ‐ 6191.
dc.identifier.citedreferenceDamha, M.J. and Ogilvie, K.K. 1993. Oligoribonucleotide synthesis. The silyl‐phosphoramidite method. In Protocols for Oligonucleotides and Analogs ( S. Agrawal, ed.) pp. 81 ‐ 114. Humana Press, Totowa, N.J.
dc.identifier.citedreferenceden Hartog, J.A.J., Wille, G., and van Boom, J.H. 1981. Synthesis of oligoribonucleotides with sequences identical to the nucleation region of tobacco mosaic virus RNA: Preparation of AAG, AAGAAG and AAGAAGUUG via phosphotriester methods. Rec. Trav. Chim. 100: 320 ‐ 330.
dc.identifier.citedreferenceFaja, M., Reese, C.B., Song, Q., and Zhang, P.‐Z. 1997. Facile preparation of acetals and enol ethers derived from 1‐arylpiperidin‐4‐ones. J. Chem. Soc. Perkin Trans. 1 191 ‐ 194.
dc.identifier.citedreferenceFromageot, H.P.M., Reese, C.B., and Sulston, J.E. 1968. The synthesis of oligoribonucleotides. VI. 2′‐ O ‐Acyl ribonucleoside derivatives as intermediates in the synthesis of dinucleoside phosphates. Tetrahedron 24: 3533 ‐ 3540.
dc.identifier.citedreferenceGasparutto, D., Livache, T., Bazin, H., Duplaa, A.‐M., Guy, A., Khorlin, A., Molko, D., Roget, A., and Téoule, R. 1992. Chemical synthesis of a biologically active natural RNA with its minor bases. Nucl. Acids Res. 20: 5159 ‐ 5166.
dc.identifier.citedreferenceGoodwin, J.T., Stanick, W.A., and Glick, G.D. 1994. Improved solid‐phase synthesis of long oligoribonucleotides. Application to tRNA Phe and tRNA Gly. J. Org. Chem. 59: 7941 ‐ 7943.
dc.identifier.citedreferenceGough, G.R., Miller, T.J., and Mantick, N.A. 1996. p ‐Nitrobenzyloxymethyl: A new fluoride‐removable protecting group for ribonucleoside 2′‐hydroxyls. Tetrahedron Lett. 37: 981 ‐ 982.
dc.identifier.citedreferenceGriffin, B.E. and Reese, C.B. 1964. Oligoribonucleotide synthesis via 2,5‐protected ribonucleoside derivatives. Tetrahedron Lett. 2925 ‐ 2931.
dc.identifier.citedreferenceGriffin, B.E., Reese, C.B., Stephenson, G.F., and Trentham, D.R. 1968. Oligoribonucleotide synthesis from nucleoside 2′‐ O ‐benzyl ethers. Tetrahedron Lett. 4349 ‐ 4354.
dc.identifier.citedreferenceHayakawa, Y., Kataoka, M., and Noyori, R. 1996. Benzimidazolium triflate as an efficient promoter for nucleotide synthesis via the phosphoramidite method. J. Org. Chem. 61: 7996 ‐ 7997.
dc.identifier.citedreferenceHayes, J.A., Brunden, M.J., Gilham, P.T., and Gough, G.R. 1985. High‐yield synthesis of oligoribonucleotides using o ‐nitrobenzyl protection of 2′‐hydroxyls. Tetrahedron Lett. 26: 2407 ‐ 2410.
dc.identifier.citedreferenceHonda, S., Urakami, K., Koura, K., Terada, K., Sato, Y., Kohno, K., Sekine, M., and Hata, T. 1984. Synthesis of oligoribonucleotides by the use of S,S‐diphenyl N ‐monomethoxytrityl ribonucleoside 3′‐phosphorodithioates. Tetrahedron 40: 153 ‐ 163.
dc.identifier.citedreferenceIwai, S. and Ohtsuka, E. 1988. 5′‐Levulinyl and 2′‐tetrahydrofuranyl protection for the synthesis of oligoribonucleotides by the phosphoramidite approach. Nucl. Acids Res. 16: 9443 ‐ 9456.
dc.identifier.citedreferenceIwai, S., Yamada, E., Asaka, M., Hayasa, Y., Inone, H., and Ohtsuka, E. 1987. A new solid phase synthesis of oligoribonucleotides by the phosphoro‐p‐anisidate method using tetrahydrofuranyl protection of 2′‐hydroxyl groups. Nucl. Acids Res. 15: 3761 ‐ 3772.
dc.identifier.citedreferenceJärvinen, P., Oivanen, M., and Lönnberg, H. 1991. Interconversion and phosphoester hydrolysis of 2′,5′ and 3′,5′‐dinucleoside monophosphates: Kinetics and mechanisms. J. Org. Chem. 56: 5396 ‐ 5401.
dc.identifier.citedreferenceJones, S.S., and Reese, C.B. 1979. Migration of t‐butyldimethylsilyl protecting groups. J. Chem. Soc. Perkin Trans. 1 2762 ‐ 2764.
dc.identifier.citedreferenceJones, S.S., Rayner, B., Reese, C.B., Ubasawa, A., and Ubasawa, M. 1980. Synthesis of the 3′‐terminal decaribonucleoside nonaphosphate of yeast alanine transfer ribonucleic acid. Tetrahedron 36: 3075 ‐ 3085.
dc.identifier.citedreferenceJones, S.S., Reese, C.B., Sibanda, S., and Ubasawa, A. 1981. The protection of uracil and guanine residues in oligonucleotide synthesis. Tetrahedron Lett. 22: 4755 ‐ 4758.
dc.identifier.citedreferenceJones, S.S., Reese, C.B., and Sibanda, S. 1983. Studies directed towards the synthesis of yeast alanine tRNA. In Current Trends in Organic Synthesis ( H. Nozaki, ed.) pp. 71 ‐ 81. Pergamon Press, Oxford.
dc.identifier.citedreferenceKamimura, T., Tsuchiya, M., Urakami, K., Koura, K., Sekine, M., Shinozaki, K., Miura, K., and Hata, T. 1984. Synthesis of a dodecaribonucleotide GUAUCAAUAAUG by use of fully protected ribonucleotide building blocks. J. Am. Chem. Soc. 106: 4552 ‐ 4557.
dc.identifier.citedreferenceKawahara, S., Wada, T., and Sekine, M. 1996. Unprecedented mild acid‐catalyzed desilylation of the 2′‐ O ‐tert‐butyldimethylsilyl group from chemically synthesized oligoribonucleotide intermediates via neighbouring group participation of the internucleotide phosphate residue. J. Am. Chem. Soc. 118: 9461 ‐ 9468.
dc.identifier.citedreferenceKempe, T., Chow, F., Sundquist, W.I., Nardi, T.J., Paulson, B., and Peterson, S.M. 1982. Selective 2′‐benzoylation at the cis 2′,3′‐diols of protected ribonucleosides. New solid phase synthesis of RNA and DNA‐RNA mixtures. Nucl. Acids Res. 10: 6695 ‐ 6714.
dc.identifier.citedreferenceKierzek, R. 1994. The stability of trisubstituted internucleotide bond in the presence of vicinal 2′‐ hydroxyl. Chemical synthesis of uridylyl(2′‐phosphate)‐(3′→︀5′)‐uridine. Nucleosides Nucleotides 13: 1757 ‐ 1768.
dc.identifier.citedreferenceKierzek, R., Caruthers, M.H., Longfellow, C.E., Swinton, D., Turner, D.H., and Freier, S.M. 1986. Polymer‐supported RNA synthesis and its application to test the nearest‐neighbour model for duplex stability. Biochemistry 25: 7840 ‐ 7846.
dc.identifier.citedreferenceKreevoy, M.M. and Taft, R.W. Jr. 1955. The evaluation of inductive and resonance effects on reactivity. I. Hydrolysis rates of acetals of non‐conjugated aldehydes and ketones. J. Am.Chem. Soc. 77: 5590 ‐ 5595.
dc.identifier.citedreferenceKruse, C.G., Jonkers, F.L., Dert, V., and van der Gen, A. 1979. Synthetic applications of 2‐chlorotetrahydrofuran: Protection of alcohols as tetrahydro‐2‐furanyl (THF) ethers. Rec.Trav. Chim. 98: 371 ‐ 380.
dc.identifier.citedreferenceKuusela, S. and Lönnberg, H. 1994. Hydrolysis and isomerisation of the internucleosidic phosphodiester bonds of polyuridylic acids: Kinetics and mechanism. J. Chem. Soc. Perkin Trans. 2 2109 ‐ 2113.
dc.identifier.citedreferenceLehmann, C., Xu, Y.‐Z., Christodoulou, C., Tan, Z.‐K., and Gait, M.J. 1989. Solid‐phase synthesis of oligoribonucleotides using 9‐fluorenylmethoxycarbonyl (Fmoc) for 5′‐hydroxyl protection. Nucl. Acids Res. 17: 2379 ‐ 2390.
dc.identifier.citedreferenceMcGregor, A., Rao, M.V., Duckworth, G., Stockley, P.G., and Connolly, B.A. 1996. Preparation of oligoribonucleotides containing 4‐thiouridine using Fpmp chemistry. Photo crosslinking to RNA bridging proteins using 350 nm irradiation. Nucl. Acids Res. 24: 3173 ‐ 3180.
dc.identifier.citedreferenceMorgan, M.A., Kazakov, S.A., and Hecht, S.M. 1995. Phosphoryl migration during the chemical synthesis of RNA. Nucl. Acids Res. 23: 3949 ‐ 3953.
dc.identifier.citedreferenceMullah, B. and Andrus, A. 1996. Purification of 5′‐O‐trityl‐on oligoribonucleotides. Investigation of phosphate migration during purification and detritylation. Nucleosides Nucleotides 15: 419 ‐ 430.
dc.identifier.citedreferenceNorman, D.G., Reese, C.B., and Serafinowska, H.T. 1984. The protection of 2′‐hydroxy functions in oligoribonucleotide synthesis. Tetrahedron Lett. 25: 3015 ‐ 3018.
dc.identifier.citedreferenceOgilvie, K.K., Sadana, K.L., Thompson, A.E., Quillian, M.A., and Westmore, J.B. 1974. The use of silyl groups in protecting the hydroxyl functions of ribonucleosides. Tetrahedron Lett. 2861 ‐ 2863.
dc.identifier.citedreferenceOhtsuka, E. and Iwai, S. 1987. Chemical synthesis of RNA. In Synthesis and Applications of DNA and RNA ( S.A. Narang, ed.) pp. 115 ‐ 136. Academic Press, San Diego.
dc.identifier.citedreferenceOhtsuka, E., Tanaka, S., and Ikehara, M. 1978. Synthesis of the heptanucleotide corresponding to a eukaryotic initiator tRNA loop sequence. J. Am. Chem. Soc. 100: 8210 ‐ 8213.
dc.identifier.citedreferenceOhtsuka, E., Yamane, A., Doi, T., and Ikehara, M. 1984. Chemical synthesis of the 5′‐half molecule of E.coli tRNA 2 Gly. Tetrahedron 40: 47 ‐ 57.
dc.identifier.citedreferenceOwen, G.R. and Reese, C.B. 1970. A convenient preparation of tetrahydro‐4H‐pyran‐4‐one. J. Chem. Soc. C 2401 ‐ 2403.
dc.identifier.citedreferencePathak, T. and Chattopadhyaya, J. 1985. The 2′‐hydroxy function assisted cleavage of the internucleotide phosphotriester bond of a ribonucleotide under acidic conditions. Acta Chem. Scand. B 39: 799 ‐ 806.
dc.identifier.citedreferencePieles, U., Beijer, B., Bohmann, K., Weston, S., O’Loughlin, S., Adam, V., and Sproat, B.S. 1994. New and convenient protection system for pseudouridine, highly suitable for solid phase oligoribonucleotide synthesis. J. Chem. Soc. Perkin Trans. 1 3423 ‐ 3429.
dc.identifier.citedreferenceRao, M.V. and Macfarlane, K. 1995. Improvements to the chemical synthesis of biologically‐active RNA using 2′‐ O ‐Fpmp chemistry. Nucleosides Nucleotides 14: 911 ‐ 915.
dc.identifier.citedreferenceRao, T.S., Reese, C.B., Serafinowska, H.T., Takaku, H., and Zappia, G. 1987. Solid phase synthesis of the 3′‐terminal nonadecaribonucleoside octadecaphosphate sequence of yeast alanine transfer ribonucleic acid. Tetrahedron Lett. 28: 4897 ‐ 4900.
dc.identifier.citedreferenceRao, M.V., Reese, C.B., Schehlmann, V., and Yu, P.S. 1993. Use of the 1‐(2‐fluorophenyl)‐4‐ methoxypiperidin‐4‐yl (Fpmp) protecting group in the solid phase synthesis of oligo‐ and poly‐ribonucleotides. J. Chem. Soc. Perkin Trans. 1 43 ‐ 55.
dc.identifier.citedreferenceRastogi, H. and Usher, D.A. 1995. A new 2′‐hydroxyl protecting group for the automated synthesis of oligoribonucleotides. Nucl. Acids Res. 23: 4872 ‐ 4877.
dc.identifier.citedreferenceReese, C.B. 1970. A systematic approach to oligoribonucleotide synthesis. Colloq. Int. Cent. Natl. Rech. Sci. 182: 319 ‐ 328.
dc.identifier.citedreferenceReese, C.B. 1978. The chemical synthesis of oligo‐ and poly‐nucleotides by the phosphotriester approach. Tetrahedron 34: 3143 ‐ 3179.
dc.identifier.citedreferenceReese, C.B. 1989. The chemical synthesis of oligo‐ and poly‐ribonucleotides. In Nucleic Acids and Molecular Biology, Vol. 3 ( F. Eckstein and D.M.J. Lilley, ed.) pp. 164 ‐ 181. Springer‐Verlag, Berlin.
dc.identifier.citedreferenceReese, C.B. and Skone, P.A. 1984. The protection of thymine and guanine residues in oligodeoxyribonucleotide synthesis. J. Chem. Soc. Perkin Trans. 1 1263 ‐ 1271.
dc.identifier.citedreferenceReese, C.B. and Skone, P.A. 1985. Action of acid on oligoribonucleotide phosphotriester intermediates. Effects of released vicinal hydroxy functions. Nucl. Acids Res. 13: 5215 ‐ 5231.
dc.identifier.citedreferenceReese, C.B. and Thompson, E.A. 1988. A new synthesis of 1‐arylpiperidin‐4‐ols. J. Chem. Soc. Perkin Trans. 1 2881 ‐ 2885.
dc.identifier.citedreferenceReese, C.B. and Trentham, D.R. 1965. Acyl migration in ribonucleoside derivatives. TetrahedronLett. 2467 ‐ 2472.
dc.identifier.citedreferenceReese, C.B. and Zard, L. 1981. Some observations relating to oximate ion promoted unblocking of oligonucleotide aryl esters. Nucl. Acids Res. 9: 4611 ‐ 4626.
dc.identifier.citedreferenceReese, C.B., Saffhill, R., and Sulston, J.E. 1967. A symmetrical alternative to the tetrahydropyranyl protecting group. J. Am. Chem. Soc. 89: 3366 ‐ 3368.
dc.identifier.citedreferenceReese, C.B., Saffhill, R., and Sulston, J.E. 1970. 4‐Methoxytetrahydropyran‐4‐yl. A symmetrical alternative to the tetrahydropyranyl protecting group. Tetrahedron 26: 1023 ‐ 1030.
dc.identifier.citedreferenceReese, C.B., Titmas, R.C., and Yau, L. 1978. Oximate ion promoted unblocking of oligonucleotide phosphotriester intermediates. Tetrahedron Lett. 30: 2727 ‐ 2730.
dc.identifier.citedreferenceReese, C.B., Serafinowska, H.T., and Zappia, G. 1986. An acetal group suitable for the protection of 2′‐hydroxy functions in rapid oligoribonucleotide synthesis. Tetrahedron Lett. 27: 2291 ‐ 2294.
dc.identifier.citedreferenceReitz, G. and Pfleiderer, W. 1975. Synthese und Eigenschaften von O‐benzyl substituierten Diuridylphosphaten. Chem. Ber. 108: 2878 ‐ 2894.
dc.identifier.citedreferenceRozners, E., Renhofa, R., Petrova, M., Popelis, J. Kumpins, V., and Bizdena, E. 1992. Synthesis of oligoribonucleotides by the H‐phosphonate approach using base labile 2′‐ O ‐protecting groups. V. Recent progress in development of the method. Nucleosides Nucleotides 11: 579 ‐ 1593.
dc.identifier.citedreferenceRozners, E., Westman, W., and Strömberg, R. 1994. Evaluation of 2′‐hydroxyl protection in RNA synthesis using the H‐phosphonate approach. Nucl. Acids Res. 22: 94 ‐ 99.
dc.identifier.citedreferenceSakatsume, O., Ohtsuki, M., Takaku, H., and Reese, C.B. 1989. Solid phase synthesis of oligoribonucleotides using the 1‐[(2‐chloro‐4‐methyl)]‐4‐methoxypiperidin‐4‐yl (Ctmp) group for the protection of the 2′‐hydroxy functions and the H‐phosphonate approach. Nucl. Acids Res. 17: 3689 ‐ 3697.
dc.identifier.citedreferenceSandström, A., Kwiatkowski, M., and Chattopadhyaya, J. 1985. Chemical synthesis of a pentaribonucleoside tetraphosphate constituting the 3′‐acceptor stem sequence of E. coli tRNA Ile using 2′‐O‐(3‐methoxy‐1,5‐dicarbomethoxypentan‐3‐yl)‐ribonucleoside building blocks. Acta Chem. Scand. B 39: 273 ‐ 290.
dc.identifier.citedreferenceScaringe, S.A., Francklyn, C., and Usman, N. 1990. Chemical synthesis of biologically active oligoribonucleotides using β‐cyanoethyl protected ribonucleoside phosphoramidites. Nucl.Acids Res. 18: 5433 ‐ 5441.
dc.identifier.citedreferenceSchaller, H., Weimann, G., Lerch, B., and Khorana, H.G. 1963. Protected derivatives of deoxyribonucleosides and new syntheses of deoxyribonucleoside‐3′ phosphates. J. Am.Chem. Soc. 85: 3821 ‐ 3827.
dc.identifier.citedreferenceSchwartz, M.E., Breaker, R.R., Asteriadis, G.T., deBear, J.S., and Gough, G.R. 1992. Rapid synthesis of oligoribonucleotides using 2′‐ O ‐( o ‐nitrobenzyloxymethyl)‐protected monomers. Bioorg. Med. Chem. Lett. 2: 1019 ‐ 1024.
dc.identifier.citedreferenceSinha, N.O., Biernat, J., and Köster, H. 1983. β‐Cyanoethyl,N‐dialkylamino/N‐morpholinomonochlorophosphoramidites, new phosphitylating agents facilitating ease of deprotection and work‐up of synthesized oligonucleotides. Tetrahedron Lett. 24: 5843 ‐ 5846.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.