Show simple item record

Inconsistent patterns of body size evolution in co‐occurring island reptiles

dc.contributor.authorItescu, Yuval
dc.contributor.authorSchwarz, Rachel
dc.contributor.authorDonihue, Colin M.
dc.contributor.authorSlavenko, Alex
dc.contributor.authorRoussos, Stephanos A.
dc.contributor.authorSagonas, Kostas
dc.contributor.authorValakos, Efstratios D.
dc.contributor.authorFoufopoulos, Johannes
dc.contributor.authorPafilis, Panayiotis
dc.contributor.authorMeiri, Shai
dc.date.accessioned2018-05-15T20:15:01Z
dc.date.available2019-07-01T14:52:17Zen
dc.date.issued2018-05
dc.identifier.citationItescu, Yuval; Schwarz, Rachel; Donihue, Colin M.; Slavenko, Alex; Roussos, Stephanos A.; Sagonas, Kostas; Valakos, Efstratios D.; Foufopoulos, Johannes; Pafilis, Panayiotis; Meiri, Shai (2018). "Inconsistent patterns of body size evolution in co‐occurring island reptiles." Global Ecology and Biogeography 27(5): 538-550.
dc.identifier.issn1466-822X
dc.identifier.issn1466-8238
dc.identifier.urihttps://hdl.handle.net/2027.42/143729
dc.description.abstractAimAnimal body sizes are often remarkably variable across islands, but despite much research we still have a poor understanding of both the patterns and the drivers of body size evolution. Theory predicts that interspecific competition and predation pressures are relaxed on small, remote islands, and that these conditions promote body size evolution. We studied body size variation across multiple insular populations of 16 reptile species co‐occurring in the same archipelago and tested which island characteristics primarily drive body size evolution, the nature of the common patterns, and whether co‐occurring species respond in a similar manner to insular conditions.LocationAegean Sea islands.Time period1984–2016.Major taxa studiedReptiles.MethodsWe combined fieldwork, museum measurements and a comprehensive literature survey to collect data on nearly 10,000 individuals, representing eight lizard and eight snake species across 273 islands. We also quantified a large array of predictors to assess directly the effects of island area, isolation (both spatial and temporal), predation and interspecific competition on body size evolution. We used linear models and meta‐analyses to determine which predictors are informative for all reptiles, for lizards and snakes separately, and for each species.ResultsBody size varies with different predictors across the species we studied, and patterns differ within families and between lizards and snakes. Each predictor influenced body size in at least one species, but no general trend was recovered. As a group, lizards are hardly affected by any of the predictors we tested, whereas snake size generally increases with area and with competitor and predator richness, and decreases with isolation.Main conclusionsNo factor emerges as a predominant driver of Aegean reptile sizes. This contradicts theories of general body size evolutionary trajectories on islands. We conclude that overarching generalizations oversimplify patterns and processes of reptile body size evolution on islands. Instead, species’ autecology and island particularities interact to drive the course of size evolution.
dc.publisherWiley
dc.subject.otherpredation
dc.subject.othersnakes
dc.subject.otherbody size
dc.subject.otherisland area
dc.subject.otherisolation
dc.subject.otherlizards
dc.subject.othercompetition
dc.titleInconsistent patterns of body size evolution in co‐occurring island reptiles
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbsecondlevelGeology and Earth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143729/1/geb12716_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143729/2/geb12716.pdf
dc.identifier.doi10.1111/geb.12716
dc.identifier.sourceGlobal Ecology and Biogeography
dc.identifier.citedreferenceMarquet, P. A., & Taper, M. L. ( 1998 ). On size and area: Patterns of mammalian body size extremes across landmasses. Evolutionary Ecology, 12, 127 – 139.
dc.identifier.citedreferenceLaliberté, E. ( 2011 ). Metacor: Meta‐analysis of correlation coefficients. R package. Retrieved from http://CRAN.R-project.org/package=metacor
dc.identifier.citedreferenceLeisler, B., & Winkler, H. ( 2015 ). Evolution of island warblers: Beyond bills and masses. Journal of Avian Biology, 46, 236 – 244.
dc.identifier.citedreferenceLomolino, M. V. ( 2005 ). Body size evolution in insular vertebrates: Generality of the island rule. Journal of Biogeography, 32, 1683 – 1699.
dc.identifier.citedreferenceLosos, J. B., & Pringle, R. M. ( 2011 ). Competition, predation and natural selection in island lizards. Nature, 475, E1 –E2.
dc.identifier.citedreferenceLosos, J. B., Schoener, T. W., & Spiller, D. A. ( 2004 ). Predator‐induced behaviour shifts and natural selection in field‐experimental lizard populations. Nature, 432, 505 – 508.
dc.identifier.citedreferenceLymberakis, P., & Poulakakis, N. ( 2010 ). Three continents claiming an archipelago: The evolution of Aegean’s herpetofaunal diversity. Diversity, 2, 233 – 255.
dc.identifier.citedreferenceMac Nally, R., Duncan, R. P., Thomson, J. R., & Yen, J. D. L. ( 2017 ). Model selection using information criteria, but is the “best” model any good? Journal of Applied Ecology, https://doi.org/10.1111/1365–2664.13060
dc.identifier.citedreferenceMacArthur, R. H., & Wilson, E. O. ( 1963 ). An equilibrium theory of insular zoogeography. Evolution, 17, 373 – 387.
dc.identifier.citedreferenceMadsen, T., & Shine, R. ( 1993 ). Phenotypic plasticity in body sizes and sexual size dimorphism in European grass snakes. Evolution, 47, 321 – 325.
dc.identifier.citedreferenceMeik, J. M., Lawing, A. M., Pires‐daSilva, A., & Welch, J. ( 2010 ). Body size evolution in insular speckled rattlesnakes (Viperidae: Crotalus mitchellii ). PLoS One, 5, e9524.
dc.identifier.citedreferenceMeik, J. M., Schaack, S., Ingrasci, M. J., Lawing, A. M., Setser, K., Mociño‐Deloya, E., & Flores‐Villela, O. ( 2012 ). Notes on activity, body size variation, and diet in insular speckled rattlesnakes from the western Sea of Cortés, Mexico. Herpetological Review, 43, 556 – 560.
dc.identifier.citedreferenceMeiri, S. ( 2007 ). Size evolution in island lizards. Global Ecology and Biogeography, 16, 702 – 708.
dc.identifier.citedreferenceMeiri, S. ( 2008 ). Evolution and ecology of lizard body sizes. Global Ecology and Biogeography, 17, 724 – 734.
dc.identifier.citedreferenceMeiri, S., Dayan, T., & Simberloff, D. ( 2005 ). Area, isolation and body size evolution in insular carnivores. Ecology Letters, 8, 1211 – 1217.
dc.identifier.citedreferenceMeiri, S., Dayan, T., & Simberloff, D. ( 2006 ). The generality of the island rule reexamined. Journal of Biogeography, 33, 1571 – 1577.
dc.identifier.citedreferenceMeiri, S., Kadison, A. E., Novosolov, M., Pafilis, P., Foufopoulos, J., Itescu, Y., … Pincheira‐Donoso, D. ( 2014 ). The number of competitor species is unlinked to sexual dimorphism. Journal of Animal Ecology, 83, 1302 – 1312.
dc.identifier.citedreferenceMeiri, S., Meijaard, E., Wich, S. A., Groves, C. P., & Helgen, K. M. ( 2008 ). Mammals of Borneo – small size on a large island. Journal of Biogeography, 35, 1087 – 1094.
dc.identifier.citedreferenceMelton, R. H. ( 1982 ). Body size and island Peromyscus: A pattern and a hypothesis. Evolutionary Theory, 6, 113 – 126.
dc.identifier.citedreferencePafilis, P., Meiri, S., Foufopoulos, J., & Valakos, E. ( 2009 ). Intraspecific competition and high food availability are associated with insular gigantism in a lizard. Naturwissenschaften, 96, 1107 – 1113.
dc.identifier.citedreferencePalkovacs, E. P. ( 2003 ). Explaining adaptive shifts in body size on islands: A life history approach. Oikos, 103, 37 – 44.
dc.identifier.citedreferencePérez‐Mellado, V., Corti, C., & Lo Cascioa, P. ( 1997 ). Tail autotomy and extinction in Mediterranean lizards. A preliminary study of continental and insular populations. Journal of Zoology, 243, 533 – 541.
dc.identifier.citedreferenceRaia, P., Barbera, C., & Conte, M. ( 2003 ). The fast life of a dwarfed giant. Evolutionary Ecology, 17, 293 – 312.
dc.identifier.citedreferenceSchoener, T. W. ( 1970 ). Size patterns in West Indian Anolis lizards. II. Correlations with the sizes of particular sympatric species‐displacement and convergence. The American Naturalist, 104, 155 – 174.
dc.identifier.citedreferenceSchwaner, T. D. ( 1985 ). Population structure of black tiger snakes, Notechis ater niger, on offshore islands of South Australia. In G. Grigg, R. Shine, & H. Ehmann (Eds.), Biology of Australasian frogs and reptiles (pp. 35 – 46 ). Mosman, NSW, Australia: Royal Zoological Society of New South Wales.
dc.identifier.citedreferenceShine, R. ( 1987 ). Ecological comparisons of island and mainland populations of Australian tigersnakes ( Notechis: Elapidae). Herpetologica, 43, 233 – 240.
dc.identifier.citedreferenceSoulé, M. ( 1966 ). Trends in the insular radiation of a lizard. The American Naturalist, 100, 47 – 64.
dc.identifier.citedreferenceValakos, E. D., Pafilis, P., Sotiropoulos, K., Lymberakis, P., Maragou, P., & Foufopoulos, J. ( 2008 ). The amphibians and reptiles of Greece. Frankfurt am Main, Germany: Edition Chimaira.
dc.identifier.citedreferenceVan Valen, L. ( 1973 ). Pattern and the balance of nature. Evolutionary Theory, 1, 31 – 49.
dc.identifier.citedreferenceVervust, B., Grbac, I., & Van Damme, R. ( 2007 ). Differences in morphology, performance and behaviour between recently diverged populations of Podarcis sicula mirror differences in predation pressure. Oikos, 116, 1343 – 1352.
dc.identifier.citedreferenceVincent, S. E., Brandley, M. C., Kuriyama, T., Mori, A., Herrel, A., & Hasegawa, M. ( 2009 ). Insular gigantism and dwarfism in a snake, adaptive response or spandrel to selection on gape size. Nature Precedings, Retrieved from http://precedings.nature.com/documents/3360/version/1
dc.identifier.citedreferenceAdler, G. H., & Levins, R. ( 1994 ). The island syndrome in rodent populations. The Quarterly Review of Biology, 69, 473 – 490.
dc.identifier.citedreferenceAnderson, R. P., & Handley, C. O. ( 2002 ). Dwarfism in insular sloths: Biogeography, selection, and evolutionary rate. Evolution, 56, 1045 – 1058.
dc.identifier.citedreferenceArnold, E. N. ( 1979 ). Indian Ocean giant tortoises: Their systematics and island adaptations. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 286, 127 – 145.
dc.identifier.citedreferenceArnold, T. W. ( 2010 ). Uninformative parameters and model selection using Akaike’s Information Criterion. Journal of Wildlife Management, 74, 1175 – 1178.
dc.identifier.citedreferenceAubret, F. ( 2012 ). Body‐size evolution on islands: Are adult size variations in tiger snakes a nonadaptive consequence of selection on birth size? The American Naturalist, 179, 756 – 767.
dc.identifier.citedreferenceAubret, F. ( 2015 ). Island colonisation and the evolutionary rates of body size in insular neonate snakes. Heredity, 115, 349 – 356.
dc.identifier.citedreferenceBenjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B. A., Wagenmakers, E.‐J., Berk, R., … Johnson, V. E. ( 2017 ). Redefine statistical significance. Nature Human Behaviour, https://doi.org/10.1038/s41562‐017‐0189‐z
dc.identifier.citedreferenceBoback, S. M. ( 2003 ). Body size evolution in snakes: Evidence from island populations. Copeia, 2003, 81 – 94.
dc.identifier.citedreferenceBoback, S. M., & Guyer, C. ( 2003 ). Empirical evidence for an optimal body size in snakes. Evolution, 57, 345 – 451.
dc.identifier.citedreferenceCalsbeek, R., & Cox, R. M. ( 2010 ). Experimentally assessing the relative importance of predation and competition as agents of selection. Nature, 465, 613 – 616.
dc.identifier.citedreferenceCalsbeek, R., & Cox, R. M. ( 2011 ). Calsbeek & Cox reply. Nature, 475, E3.
dc.identifier.citedreferenceCase, T. J. ( 1976 ). Body size differences between populations of the chuckwalla, Sauromalus obesus. Ecology, 57, 313 – 323.
dc.identifier.citedreferenceCase, T. J. ( 1978 ). A general explanation for insular body size trends in terrestrial vertebrates. Ecology, 59, 1 – 18.
dc.identifier.citedreferenceCase, T. J., & Schwaner, T. D. ( 1993 ). Island/mainland body size differences in Australian varanid lizards. Oecologia, 94, 102 – 109.
dc.identifier.citedreferenceCooper, W. E., Prez‐Mellado, V., & Vitt, L. J. ( 2004 ). Ease and effectiveness of costly autotomy vary with predation intensity among lizard populations. Journal of Zoology, 262, 243 – 255.
dc.identifier.citedreferenceDarlington, P. J. ( 1957 ). Zoogeography: The geographical distribution of animals. New York: Wiley.
dc.identifier.citedreferenceDiniz‐Filho, J. A. F., & Raia, P. ( 2017 ). Island rule, quantitative genetics and brain–body size evolution in Homo floresiensis. Proceedings of the Royal Society B: Biological Sciences, 284, 20171065.
dc.identifier.citedreferenceDonihue, C. M., Brock, K. M., Foufopoulos, J., Herrel, A., & Grindstaff, J. ( 2016 ). Feed or fight: Testing the impact of food availability and intraspecific aggression on the functional ecology of an island lizard. Functional Ecology, 30, 566 – 575.
dc.identifier.citedreferenceDunham, A. E., Tinkle, D. W., & Gibbons, J. W. ( 1978 ). Body size in island lizards: A cautionary tale. Ecology, 59, 1230 – 1238.
dc.identifier.citedreferenceFaurby, S., & Svenning, J.‐C. ( 2016 ). Resurrection of the island rule: Human‐driven extinctions have obscured a basic evolutionary pattern. The American Naturalist, 187, 812 – 820.
dc.identifier.citedreferenceFeldman, A., & Meiri, S. ( 2013 ). Length–mass allometry in snakes. Biological Journal of the Linnean Society, 108, 161 – 172.
dc.identifier.citedreferenceFeldman, A., Sabath, N., Pyron, R. A., Mayrose, I., & Meiri, S. ( 2016 ). Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. Global Ecology and Biogeography, 25, 187 – 197.
dc.identifier.citedreferenceFielding, J., Turland, N. J., & Mathew, B. ( 2005 ). Flowers of Crete. London, U.K.: Royal Botanic Gardens, Kew.
dc.identifier.citedreferenceFilin, I., & Ziv, Y. ( 2004 ). New theory of insular evolution: Unifying the loss of dispersability and body‐mass change. Evolutionary Ecology Research, 6, 115 – 124.
dc.identifier.citedreferenceForsman, A. ( 1991 ). Variation in sexual size dimorphism and maximum body size among adder populations: Effects of prey size. The Journal of Animal Ecology, 60, 253 – 267.
dc.identifier.citedreferenceFoufopoulos, J., & Ives, A. R. ( 1999 ). Reptile extinctions on land‐bridge islands: Life‐history attributes and vulnerability to extinction. The American Naturalist, 153, 1 – 25.
dc.identifier.citedreferenceFoufopoulos, J., Kilpatrick, A. M., & Ives, A. R. ( 2011 ). Climate change and elevated extinction rates of reptiles from Mediterranean islands. The American Naturalist, 177, 119 – 129.
dc.identifier.citedreferenceGlaw, F., Köhler, J., Townsend, T. M., Vences, M., & Salamin, N. ( 2012 ). Rivaling the world’s smallest reptiles: Discovery of miniaturized and microendemic new species of leaf chameleons ( Brookesia ) from northern Madagascar. PLoS One, 7, e31314.
dc.identifier.citedreferenceHasegawa, M. ( 2003 ). Ecological diversification of insular terrestrial reptiles: A review of the studies on the lizard and snakes of the Izu Islands. Global Environmental Research, 7, 59 – 68.
dc.identifier.citedreferenceHasegawa, M., & Mori, A. ( 2008 ). Does a gigantic insular snake grow faster or live longer to be gigantic? Evidence from a long‐term field study. South American Journal of Herpetology, 3, 145 – 154.
dc.identifier.citedreferenceHasegawa, M., & Moriguchi, H. ( 1989 ). Geographic variation in food habits, body size and life history traits of the snakes on the Izu Islands. In M. Matui, T. Hikida, & R. C. Goris (Eds.), Current herpetology in East Asia (pp. 414 – 432 ). Tokyo, Japan: The Herpetological Society of Japan.
dc.identifier.citedreferenceHeaney, L. R. ( 1978 ). Island area and body size of insular mammals: Evidence from the tri‐colored squirrel ( Callosciurus prevosti ) of Southeast Asia. Evolution, 32, 29 – 44.
dc.identifier.citedreferenceHeaney, L. R. ( 2000 ). Dynamic disequilibrium: A long‐term, large‐scale perspective on the equilibrium model of island biogeography. Global Ecology and Biogeography, 9, 59 – 74.
dc.identifier.citedreferenceHedges, S. B. ( 2008 ). At the lower size limit in snakes: Two new species of threadsnakes (Squamata: Leptotyphlopidae: Leptotyphlops ) from the Lesser Antilles. Zootaxa, 1841, 1 – 30.
dc.identifier.citedreferenceHedges, S. B., & Thomas, R. ( 2001 ). At the lower size limit in amniote vertebrates: A new diminutive lizard from the West Indies. Caribbean Journal of Science, 37, 168 – 173.
dc.identifier.citedreferenceItescu, Y. ( 2017 ). Evolution on islands: Testing the extent and consistency of the effects of island characteristics (Unpublished PhD thesis). Tel Aviv University, Tel Aviv, Israel.
dc.identifier.citedreferenceItescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C. H., & Meiri, S. ( 2014 ). Is the island rule general? Turtles disagree. Global Ecology and Biogeography, 23, 689 – 700.
dc.identifier.citedreferenceItescu, Y., Schwarz, R., Meiri, S., Pafilis, P., & Clegg, S. ( 2017 ). Intra‐specific competition, not predation, drives lizard tail loss on islands. Journal of Animal Ecology, 86, 66 – 74.
dc.identifier.citedreferenceItescu, Y., Schwarz, R., Moses, M., Pafilis, P., & Meiri, S. ( 2016 ). Record sizes for the Turkish house gecko, Hemidactylus turcicus, from Aegean islands, Greece. The Herpetological Bulletin, 138, 24 – 26.
dc.identifier.citedreferenceJohnson, V. E. ( 2013 ). Revised standards for statistical evidence. Proceedings of the National Academy of Sciences USA, 110, 19313 – 19317.
dc.identifier.citedreferenceKeehn, J. E., Nieto, N. C., Tracy, C. R., Gienger, C. M., & Feldman, C. R. ( 2013 ). Evolution on a desert island: Body size divergence between the reptiles of Nevada’s Anaho Island and the mainland around Pyramid Lake. Journal of Zoology, 291, 269 – 278.
dc.identifier.citedreferenceKing, R. B. ( 1989 ). Body size variation among island and mainland snake populations. Herpetologica, 45, 84 – 88.
dc.identifier.citedreferenceKöhler, M., Moyà‐Solà, S., & Wrangham, R. W. ( 2008 ). Island rules cannot be broken. Trends in Ecology and Evolution, 23, 6 – 7.
dc.identifier.citedreferenceKolbe, J. J., Leal, M., Schoener, T. W., Spiller, D. A., & Losos, J. B. ( 2012 ). Founder effects persist despite adaptive differentiation: A field experiment with lizards. Science, 335, 1086 – 1089.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.