Show simple item record

Palladium‐Mediated C5 Substitution of Pyrimidine Nucleosides

dc.contributor.authorAhmadian, Mohammad
dc.contributor.authorKlewer, Douglas A.
dc.contributor.authorBergstrom, Donald E.
dc.date.accessioned2018-05-15T20:15:02Z
dc.date.available2018-05-15T20:15:02Z
dc.date.issued2000-02
dc.identifier.citationAhmadian, Mohammad; Klewer, Douglas A.; Bergstrom, Donald E. (2000). "Palladium‐Mediated C5 Substitution of Pyrimidine Nucleosides." Current Protocols in Nucleic Acid Chemistry 00(1): 1.1.1-1.1.18.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/143730
dc.description.abstractOne of the most efficient ways to link a reporter group to oligonucleotides is through the incorporation of a modified nucleoside during automated oligonucleotide synthesis. To be useful, it is important that the reporter group not interfere in hybridization reactions. This unit describes two linkers that can be used for the incorporation of a reporter group at the C5 position of deoxyuridine: a flexible aminoethylthioether linker, and a rigid amidopropynyl linker. The latter is suffciently long and positioned so that the reporter group lies outside the major groove of the DNA duplex.
dc.publisherWiley Periodicals, Inc.
dc.publisherIRL Press
dc.titlePalladium‐Mediated C5 Substitution of Pyrimidine Nucleosides
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143730/1/cpnc0101.pdf
dc.identifier.doi10.1002/0471142700.nc0101s00
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceProber, J.M., Trainor, G.L., Dam, R.J., Hobbs, F.W., Robertson, C.W., Zagursky, R.J., Cocuzza, A.J., Jensen, M.A., and Baumeister, K. 1987. A system for rapid DNA sequencing with fluorescent chain‐terminating dideoxynucleotides. Science 238: 336 ‐ 341.
dc.identifier.citedreferenceRobins, M.J. and Barr, P.J. 1983. Nucleic acid related compounds. 39. Efficient conversation of 5‐iodo to 5‐alkynyl and derived 5‐substituted uracil bases and nucleosides. J. Org. Chem. 48: 1854 ‐ 1862.
dc.identifier.citedreferenceKwiatkowski, M., Samiotaki, M., Lamminmaki, U., Mukkala, V.‐M., and Landegren, U. 1994. Solid‐phase synthesis of chelate‐labelled oligonucleoties:Application in triple‐color ligase‐mediated gene analysis. Nucl. Acids Res. 22: 2604 ‐ 2611.
dc.identifier.citedreferenceLanger, P.R., Waldrop, A.A., and Ward, D.C. 1981. Enzymatic synthesis of biotin‐labeled polynucleotides: Novel nucleic acid affinity probes. Proc. Natl. Acad. Sci. U.S.A. 78: 6633 ‐ 6637.
dc.identifier.citedreferenceMeyer, K.L. and Hanna, M.M. 1996. Synthesis and characterization of a new 5‐thiol‐protected deoxyuridine for site‐specific modification of DNA. Bioconjugate Chem. 7: 401 ‐ 412.
dc.identifier.citedreferenceRobins, M.J. and Barr, P.J. 1981. Nucleic acid related compounds. 31. Smooth and efficient palladium‐copper catalyzed coupling of terminal alkynes with 5‐iodouracil nucleosides. Tetrahedron Lett. 22: 421 ‐ 424.
dc.identifier.citedreferenceTesler, J., Cruickshank, K.A., Morrison, L.E., and Netzel, T. 1989. Synthesis and characterization of DNA oligomers and duplex containing covalently attached molecular labels: Comparison of biotin,fluorescin, and pyrene labels by thermodynamic and optical spectroscopic measurements. J. Am. Chem. Soc. 111: 6966 ‐ 6976.
dc.identifier.citedreferenceTabone, J.C., Stamm, M.R., Gamper, H.B., and Meyer, R.B. Jr. 1994. Factors influencing the extent and regiospecificity of cross‐link formation between single‐stranded DNA and reactive complementary oligodeoxynucleotides. Biochemistry 33: 375 ‐ 383.
dc.identifier.citedreferenceSpaltenstein, A., Robinson, B.H., and Hopkins, P.B. 1989. Sequence‐and structure‐dependent DNA base dynamics: Synthesis,structure, and dynamics of site and sequence specifically spin‐labeled DNA. Biochemistry 28: 9484 ‐ 9495.
dc.identifier.citedreferenceSpaltenstein, A., Robinson, B.H., and Hopkins, P.B. 1988. A rigid and nonperturbing probe for duplex DNA motion. J. Am. Chem. Soc. 110: 1299 ‐ 1301.
dc.identifier.citedreferenceShimkus, M., Levy, J., and Herman, T. 1985. A chemically cleavable biotinylated nucleotide: Usefulness in the recovery of protein‐DNA complexes from avidin affinity columns. Proc. Natl. Acad. Sci. U.S.A. 82: 2593 ‐ 2597.
dc.identifier.citedreferenceShah, K., Neenhold, H., Wang, Z., and Rana, T.M. 1996. Incorporation of an artificial protease and nuclease at the HIV‐1 Tat binding site of trans ‐activation responsive RNA. Bioconjugate Chem. 7: 283 ‐ 289.
dc.identifier.citedreferenceSagi, J., Szemzo, A., Ebinger, K., Szabolcs, A., Sagi, G., Ruff, E., and Otvos, L. 1993. Base‐modified oligodeoxynucleotides. I. Effect of 5‐alkyl, 5‐(1‐alkenyl) and 5‐(1‐alkynyl) substitution of the pyrimidines on duplex stability and hydrophobicity. Tetrahedron Lett. 34: 2191 ‐ 2194.
dc.identifier.citedreferenceAhmadian, M., Zhang, P., and Bergstrom, D.E. 1998. A comparative study of the thermal stability of oligodeoxyribonucleotides containing 5‐substituted‐2′‐deoxyuridines. Nucl. Acids Res. 26: 3127 ‐ 3135.
dc.identifier.citedreferenceBashkin, J.K., Sondhi, S.M., Sampath, U., d’Avignon, D.A., and Modak, A.S. 1994. Synthesis and connectivity assignment (by 2D‐NMR) of a nucleoside‐dipeptide: 5‐[3‐[[2‐[[2‐[[[2‐Amino]‐1‐oxo‐3‐[1H‐imidazol‐4‐yl]propyl]amino]‐1‐ oxo‐3‐[1H‐imidazol‐4‐yl]propyl]amino]ethyl] amino]‐3‐oxopropyl]‐2′‐deoxyuridine. New J. Chem. 18: 305 ‐ 318.
dc.identifier.citedreferenceBergstrom, D.E. and Chen, J. 1996. Sequence‐specific oligodeoxyribonucletide cleavage by a major‐groove‐positioned metal‐binding ligand tethered to C‐5 of deoxyuridine. Bioorg. Med. Chem. Lett. 6: 2211 ‐ 2214.
dc.identifier.citedreferenceBergstrom, D.E. and Ogawa, M.K. 1978. C‐5 substituted pyrimidine nucleosides. 2. Synthesis via olefin coupling to organopalladium intermediates derived from uridine and 2′‐deoxyuridine. J. Am. Chem. Soc. 100: 8106 ‐ 8112.
dc.identifier.citedreferenceBergstrom, D.E. and Ruth, J.L. 1977. Preparation of C‐5 mercurated pyrimidine nucleosides. J. Carbohydrates Nucleotides Nucleosides 42: 257 ‐ 269.
dc.identifier.citedreferenceBergstrom, D.E., Beal, P., Jenson, J., and Lin, X. 1991. Palladium‐mediated synthesis of C‐5 pyrimidine nucleoside thioethers from disulfides and mercurinucleosides. J. Org. Chem. 56: 5598 ‐ 5602.
dc.identifier.citedreferenceChaudhuri, N.C. and Kool, E.T. 1995. Very high affinity DNA recognition by bicyclic and cross‐linked oligonucleotides. J. Am. Chem. Soc. 117: 10434 ‐ 10442.
dc.identifier.citedreferenceCook, A.F., Vuocolo, E., and Brakel, C.L. 1988. Synthesis and hybridization of a series of bio‐tinylated oligonucleotides. Nucl. Acids. Res. 16: 4077 ‐ 4095.
dc.identifier.citedreferenceDreyer, G.B. and Dervan, P.B. 1985. Sequence‐specific cleavage of single‐stranded DNA: Oligodeoxynucleotide‐EDTA.Fe(II). Proc. Natl. Acad. Sci. U.S.A. 82: 968 ‐ 972.
dc.identifier.citedreferenceGibson, K.J. and Benkovic, S.J. 1987. Synthesis and application of derivatizable oligonucleotides. Nucl. Acids Res. 15: 6455 ‐ 6467.
dc.identifier.citedreferenceGoodchild, J. 1990. Conjugates of oligonucleotides and modified oligonucleotides: A review of their synthesis and properties. Bioconjugate Chem. 1: 165 ‐ 187.
dc.identifier.citedreferenceHagmar, P., Bailey, M., Tong, G., Haralambidis, J., Sawyer, W.H., and Davidson, B.E. 1995. Synthesis and characterization of fluorescent oligonucleotides. Effect of internal labelling on protein recognition. Biochim. Biophys. Acta 1244: 259 ‐ 268.
dc.identifier.citedreferenceHobbs, F.W. Jr. 1989. Palladium‐catalyzed synthesis of alkynylamino nucleosides. A universal linker for nucleic acids. J. Org. Chem. 54: 3420 ‐ 3422.
dc.identifier.citedreferenceJones, R.A. 1984. Preparation of protected deoxyribonucleosides. In Oligonucleotide Synthesis: A Practical Approach ( M.J. Gait, ed.) pp. 27 ‐ 28. IRL Press, Washington,D.C.
dc.identifier.citedreferenceKirchner, J.J., Hustedt, E.J., Robinson, B.H., and Hopkins, P.B. 1990. DNA dynamics from a spin probe:Dependence of probe motion on tether length. Tetrahedron Lett. 31: 593 ‐ 596.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.