Show simple item record

Biophysical Analysis of Nucleic Acids

dc.contributor.authorTinoco, Ignacio
dc.date.accessioned2018-05-15T20:15:03Z
dc.date.available2018-05-15T20:15:03Z
dc.date.issued2000-02
dc.identifier.citationTinoco, Ignacio (2000). "Biophysical Analysis of Nucleic Acids." Current Protocols in Nucleic Acid Chemistry 00(1): 7.1.1-7.1.8.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/143731
dc.description.abstractThis overview unit provides a thorough overview of biophysical methods used for structure analysis, including X‐ray diffraction, nuclear magnetic resonance, optical spectroscopy, theoretical and computational methods, and single‐molecule methods. Advantages and disadvantages of the methods are compared.
dc.publisherVCH Publishers
dc.publisherWiley Periodicals, Inc.
dc.titleBiophysical Analysis of Nucleic Acids
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143731/1/cpnc0701.pdf
dc.identifier.doi10.1002/0471142700.nc0701s00
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceSmith, S.B., Finzi, L., and Bustamante, C. 1992. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258: 1122 ‐ 1126.
dc.identifier.citedreferenceSantaLucia, J. Jr., Shen, L.X., Cai, Z., Lewis, H., and Tinoco, I. Jr. 1995. Synthesis and NMR of RNA with selective isotopic enrichment in the base moieties. Nucl. Acids Res. 23: 4913 ‐ 4921.
dc.identifier.citedreferenceScott, W.G., Finch, J.T., and Klug, A. 1995. The crystal structure of an all‐RNA hammerhead ribozyme: A proposed mechanism for the RNA catalytic cleavage. Cell 81: 991 ‐ 1002.
dc.identifier.citedreferenceScott, W.G., Murray, J.B., Arnold, J.R.P., Stoddard, B.L., and Klug, A. 1996. Capturing the structure of a catalytic RNA intermediate: The hammerhead ribozyme. Science 274: 2065 ‐ 2069.
dc.identifier.citedreferenceShen, L.X. and Tinoco, I. Jr. 1995. The structure of an RNA pseudoknot that causes efficient frameshifting in mouse mammary tumor virus. J. Mol. Biol. 247: 963 ‐ 978.
dc.identifier.citedreferenceTinoco, I. Jr. and Kieft, J.S. 1997. The ion core in RNA folding. Nature Struct. Biol. 4: 509 ‐ 512.
dc.identifier.citedreferenceTolbert, T.J. and Williamson, J.R. 1996. Preparation of specifically deuterated RNA for NMR studies using a combination of chemical and enzymatic synthesis. J. Am. Chem. Soc. 118: 7929 ‐ 7940.
dc.identifier.citedreferenceTuschl, T., Gohlke, C., Jovin, T.M., Westhof, E., and Eckstein, F. 1994. A three‐dimensional model for the hammerhead ribozyme based on fluorescence measurements. Science 266: 785 ‐ 789.
dc.identifier.citedreferenceVarani, G. 1997. RNA‐protein intermolecular recognition. Acc. Chem. Res. 30: 189 ‐ 195.
dc.identifier.citedreferenceVarani, G. and Tinoco, I. Jr. 1991. RNA structure and NMR spectroscopy. Q. Rev. Biophys. 24: 479 ‐ 532.
dc.identifier.citedreferenceWang, E., Malek, S., and Feigon, J. 1992. Structure of a G⋅T⋅A triplet in an intramolecular DNA triplex. Biochemistry 31: 4838 ‐ 4846.
dc.identifier.citedreferenceWatson, J.D. and Crick, F.H.C. 1953. Molecular structure of nucleic acids. Nature 171: 737 ‐ 738.
dc.identifier.citedreferenceWemmer, D. 2000. Structure and dynamics by NMR. In Nucleic Acids: Structures, Properties, and Functions ( V.A. Bloomfield, D.M. Crothers, and I. Tinoco, Jr., eds.)pp. 111 ‐ 163. University Science Books, Mill Valley, Calif.
dc.identifier.citedreferenceWemmer, D. and Dervan, P. 1997. Targeting the minor groove of DNA. Curr. Opin. Struct. Biol. 7: 355 ‐ 361.
dc.identifier.citedreferenceWilkins, M.H.F., Stokes, A.R., and Wilson, H.R. 1953. Molecular structure of deoxypentose nucleic acids. Nature 171: 738 ‐ 740.
dc.identifier.citedreferenceWilliamson, J.R. 1994. G‐quartet structures in telomeric DNA. Annu. Rev. Biophys. Biomol. Struct. 23: 703 ‐ 786.
dc.identifier.citedreferenceWu, M. and Turner, D.H. 1996. Solution structure of (rGCGGACGC)2 by two‐dimensional NMR and the iterative relaxation matrix approach. Biochemistry 35: 9677 ‐ 9689.
dc.identifier.citedreferenceWu, M., McDowell, J.A., and Turner, D.H. 1995. A periodic table of symmetric tandem mismatches in RNA. Biochemistry 34: 3204 ‐ 3211.
dc.identifier.citedreferenceWüthrich, K. 1986. NMR of Proteins and Nucleic Acids. John Wiley & Sons, New York.
dc.identifier.citedreferenceZimmerman, G.R., Jenison, R.D., Wick, C.L., Simorre, J.‐P., and Pardi, A. 1997. Interlocking structural motifs mediate discrimination by a theophylline‐binding motif. Nature Struct. Biol. 4: 644 ‐ 648.
dc.identifier.citedreferenceAllain, F.T. and Varani, G. 1997. How accurately and precisely can RNA structure be determined by NMR? J. Mol. Biol. 267: 338 ‐ 351.
dc.identifier.citedreferenceBaeyens, K.J., De Bondt, H.L., Pardi, A., and Holbrook, S.R. 1996. A curved RNA helix incorporating an internal loop with G⋅A and A⋅A non‐Watson‐Crick base pairing. Proc. Natl. Acad. Sci. U.S.A. 93: 12851 ‐ 12855.
dc.identifier.citedreferenceBatey, R.T., Inada, M., Kujawinski, E., Puglisi, J.D., and Williamson, J.R. 1992. Preparation of isotopically labeled ribonucleotides for multidimensional NMR spectroscopy of RNA. Nucl. Acids Res. 20: 4515 ‐ 4523.
dc.identifier.citedreferenceBattiste, J.L., Tan, R., Frankel, A.D., and Williamson, J.R. 1994. Binding of an HIV Rev peptide to Rev responsive element RNA induces formation of purine‐purine base pairs. Biochemistry 33: 2741 ‐ 2747.
dc.identifier.citedreferenceBiou, V., Yaremchuk, A., Tukalo, M., and Cusack, S. 1994. The 2.9 Å crystal structure of T. thermophilus Seryl‐tRNA synthetase complexed with tRNA Ser. Science 263: 1404 ‐ 1410.
dc.identifier.citedreferenceBoland, T. and Ratner, B.D. 1995. Direct measurement of hydrogen bonding in DNA nucleotide bases by atomic force microscopy. Proc. Natl. Acad. Sci. U.S.A. 92: 5297 ‐ 5301.
dc.identifier.citedreferenceBustamante, C. 1991. Direct observation and manipulation of single DNA molecules using fluorescence microscopy. Annu. Rev. Biophys. Biophys. Chem. 20: 415 ‐ 446.
dc.identifier.citedreferenceButcher, S.E., Dieckmann, T., and Feigon, J. 1997. Solution structure of a GAAA tetraloop receptor RNA. EMBO J. 16: 7490 ‐ 7499.
dc.identifier.citedreferenceCate, J.H. and Doudna, J.A. 1996. Metal binding sites in the major groove of a large ribozyme domain. Structure 4: 1221 ‐ 1230.
dc.identifier.citedreferenceCate, J.H., Gooding, A.R., Podell, E., Zhou, K., Golden, B.L., Kundrot, C.E., Cech, T.R., and Doudna, J.A. 1996a. Crystal structure of a group I ribozyme domain: Principles of RNA packing. Science 273: 1678 ‐ 1685.
dc.identifier.citedreferenceCate, J.H., Gooding, A.R., Podell, E., Zhou, K., Golden, B.L., Szewczak, A.A., Kundrot, C.E., Cech, T.R., and Doudna, J.A. 1996b. RNA tertiary structure mediation by adenosine platforms. Science 273: 1696 ‐ 1699.
dc.identifier.citedreferenceCate, J.H., Hanna, R.L., and Doudna, J.A. 1997. A magnesium ion core at the heart of a ribozyme domain. Nature Struct. Biol. 4: 553 ‐ 558.
dc.identifier.citedreferenceChang, K.‐Y. and Tinoco, I. Jr. 1997. The structure of an RNA “kissing” hairpin complex of the HIV TAR hairpin loop and its complement. J. Mol. Biol. 269: 52 ‐ 66.
dc.identifier.citedreferenceChen, X., Ramakrishnan, B., and Sundaralingam, M. 1997. Crystal structures of the side‐by‐side binding of distamycin to AT‐containing DNA octamers d(ICITACIC) and d(ICATATIC). J. Mol. Biol. 267: 1157 ‐ 1170.
dc.identifier.citedreferenceCheong, C. and Moore, P.B. 1992. Solution structure of an unusually stable RNA tetraplex containing G‐ and U‐quartet structures. Biochemistry 31: 8406 ‐ 8414.
dc.identifier.citedreferenceChilkoti, A., Boland, T., Ratner, B.D., and Stayton, P.S. 1995. The relationship between ligand‐binding thermodynamics and protein‐ligand interaction forces measured by atomic force microscopy. Biophys. J. 69: 2125 ‐ 2130.
dc.identifier.citedreferenceChou, S.H., Zhu, L., and Reid, B.R. 1997. Sheared purine⋅purine pairing in biology. J. Mol. Biol. 267: 1055 ‐ 1067.
dc.identifier.citedreferenceClegg, R.M., Murchie, A.I., Zechel, A., and Lilley, D.M. 1993. Observing the helical geometry of double‐stranded DNA in solution by fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. U.S.A. 90: 2994 ‐ 2998.
dc.identifier.citedreferenceCorrell, C.C., Freeborn, B., Moore, P.B., and Steitz, T.A. 1997. Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Cell 91: 705 ‐ 712.
dc.identifier.citedreferenceDickson, R.M., Norris, D.J., Tzeng, Y.L., and Moerner, W.E. 1996. Three‐dimensional imaging of single molecules solvated in pores of poly(acrylamide) gels. Science 274: 966 ‐ 969.
dc.identifier.citedreferenceDickson, R.M., Cubitt, A.B., Tsien, R.Y., and Moerner, W.E. 1997. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388: 355 ‐ 358.
dc.identifier.citedreferenceDieckmann, T., Butcher, S.E., Sassanfar, M., Szostak, J.W., and Feigon, J. 1997. Mutant ATP‐binding RNA aptamers reveal the structural basis for ligand binding. J. Mol. Biol. 273: 467 ‐ 478.
dc.identifier.citedreferenceDoucet, J., Benoit, J.P., Cruse, W.B., Prange, T., and Kennard, O. 1989. Coexistence of A‐ and B‐form DNA in a single crystal lattice. Nature 337: 190 ‐ 192.
dc.identifier.citedreferenceFan, P., Suri, A.K., Fiala, R., Live, D., and Patel, D.J. 1996. Molecular recognition in the FMN‐RNA aptamer complex. J. Mol. Biol. 258: 480 ‐ 500.
dc.identifier.citedreferenceFarber, G.K. 1997. Laue crystallography: Lights! Camera! Action! Curr. Biol. 7: R352 ‐ R354.
dc.identifier.citedreferenceFoldesi, A., Yamakage, S.I., Nilsson, F.P., Maltseva, T.V., and Chattopadhyaya, J. 1996. The use of non‐uniform deuterium labelling [«NMR‐window’] to study the NMR structure of a 21mer RNA hairpin. Nucl. Acids Res. 24: 1187 ‐ 1194.
dc.identifier.citedreferenceFourmy, D., Recht, M.I., Blanchard, S.C., and Puglisi, J.D. 1996. Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science 274: 1367 ‐ 1371.
dc.identifier.citedreferenceFranklin, R.E. and Gosling, R.G. 1953. Molecular configuration in sodium thymonucleate. Nature 171: 740 ‐ 741.
dc.identifier.citedreferenceGlusker, J.P., Lewis, M., and Rossi, M. 1994. Crystal Structure Analysis for Chemists and Biologists. VCH Publishers, New York.
dc.identifier.citedreferenceGray, D.M., Hung, S.‐H., and Johnson, K.H. 1995. Absorption and circular dichroism spectroscopy of nucleic acid duplexes and triplexes. Methods Enzymol. 246: 19 ‐ 34.
dc.identifier.citedreferenceHa, T., Enderle, T., Ogletree, D.F., Chemla, D.S., Selvin, P.R., and Weiss, S. 1996. Probing the interaction between two single molecules: Fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl. Acad. Sci. U.S.A. 93: 6264 ‐ 6268.
dc.identifier.citedreferenceHolbrook, S.R., Cheong, C., Tinoco, I. Jr., and Kim, S.‐H. 1991. Crystal structure of an RNA double helix incorporating a track of non‐Watson‐Crick base pairs. Nature 353: 579 ‐ 581.
dc.identifier.citedreferenceSpecial issue: James, T.L. (ed.). 1995. Nuclear magnetic resonance and nucleic acids. Methods Enzymol. 261: 1 ‐ 644.
dc.identifier.citedreferenceJiang, F., Kumar, R.A., Jones, R.A., and Patel, D.J. 1996. Structural basis of RNA folding and recognition in an AMP‐RNA aptamer complex. Nature 382: 183 ‐ 186.
dc.identifier.citedreferenceJohnson, K.H. and Gray, D.M. 1992. Analysis of an RNA pseudoknot structure by CD spectroscopy. J. Biomol. Struct. Dyn. 9: 733 ‐ 745.
dc.identifier.citedreferenceKang, C.H., Zhang, X., Ratliff, R., Moyzis, R., and Rich, A. 1992. Crystal structure of four‐stranded oxytricha telomeric DNA. Nature 356: 126 ‐ 131.
dc.identifier.citedreferenceKasas, S., Thomson, N.H., Smith, B.L., Hansma, H.G., Zhu, X., Guthold, M., Bustamante, C., Kool, E.T., Kashlev, M., and Hansma, P.K. 1997. Escherichia coli RNA polymerase activity observed using atomic force microscopy. Biochemistry 36: 461 ‐ 468.
dc.identifier.citedreferenceKellermayer, M.S., Smith, S.B., Granzier, H.L., and Bustamante, C. 1997. Folding‐unfolding transitions in single titin molecules characterized with laser tweezers. Science 276: 1112 ‐ 1116.
dc.identifier.citedreferenceKieft, J.S. and Tinoco, I. Jr. 1997. Solution structure of a metal‐binding site in the major groove of RNA complexed with cobalt (III) hexammine. Structure 5: 713 ‐ 721.
dc.identifier.citedreferenceLeCuyer, K.A. and Crothers, D.M. 1994. Kinetics of an RNA conformational switch. Proc. Natl. Acad. Sci. U.S.A. 91: 3373 ‐ 3377.
dc.identifier.citedreferenceLipari, G. and Szabo, A. 1982. Model‐free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. J. Am. Chem. Soc. 104: 4546 ‐ 4559.
dc.identifier.citedreferenceLipscomb, L.A., Peek, M.E., Morningstar, M.L., Verghis, S.M., Miller, E.M., Rich, A., Essigmann, J.M., and Williams, L.D. 1995. X‐ray structure of a DNA decamer containing 7,8‐dihydro‐8‐oxoguanine. Proc. Natl. Acad. Sci. U.S.A. 92: 719 ‐ 723.
dc.identifier.citedreferenceLouise‐May, S., Auffinger, P., and Westhof, E. 1996. Calculations of nucleic acid conformations. Curr. Opin. Struct. Biol. 6: 289 ‐ 298.
dc.identifier.citedreferenceMaglott, E.J. and Glick, G.D. 1997. A new method to monitor the rate of conformational transitions in RNA. Nucl. Acids Res. 25: 3297 ‐ 3301.
dc.identifier.citedreferenceMiles, M. 1997. Scanning probe microscopy. Probing the future. Science 277: 1845 ‐ 1847.
dc.identifier.citedreferenceMurchie, A.I.H., Clegg, R.M., von Kitzing, E., Duckett, D.R., Diekmann, S., and Lilley, D.M.J. 1989. Fluorescence energy transfer shows that the four‐way DNA junction is a right‐handed cross of antiparallel molecules. Nature 341: 763 ‐ 766.
dc.identifier.citedreferenceNikonowicz, E.P., Sirr, A., Legault, P., Jucker, F.M., Baer, L.M., and Pardi, A. 1992. Preparation of 13 C and 15 N labelled RNAs for heteronuclear multi‐dimensional NMR studies. Nucl. Acids Res. 20: 4507 ‐ 4513.
dc.identifier.citedreferenceNoji, H., Yasuda, R., Yoshida, M., and Kinosita, K. Jr. 1997. Direct observation of the rotation of F1‐ATPase. Nature 386: 299 ‐ 302.
dc.identifier.citedreferencePassner, J.M. and Steitz, T.A. 1997. The structure of a CAP‐DNA complex having two cAMP molecules bound to each monomer. Proc. Natl. Acad. Sci. U.S.A. 94: 2843 ‐ 2847.
dc.identifier.citedreferencePease, A.C., Solas, D., Sullivan, E.J., Cronin, M.T., Holmes, C.P., and Fodor, S.P. 1994. Light‐generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl. Acad. Sci. U.S.A. 91: 5022 ‐ 5026.
dc.identifier.citedreferencePley, H.W., Flaherty, K.M., and McKay, D.B. 1994. Three‐dimensional structure of a hammerhead ribozyme. Nature 372: 68 ‐ 74.
dc.identifier.citedreferencePuglisi, J.D., Chen, L., Blanchard, S., and Frankel, A.D. 1995. Solution structure of a bovine immunodeficiency virus Tat‐TAR peptide‐RNA complex. Science 270: 1200 ‐ 1203.
dc.identifier.citedreferenceRadhakrishnan, I. and Patel, D.J. 1994. Solution structure and hydration patterns of a pyrimidine⋅purine⋅pyrimidine DNA triplex containing a novel T⋅CG base‐triple. J. Mol. Biol. 241: 600 ‐ 619.
dc.identifier.citedreferenceRamos, A., Gubser, C.C., and Varani, G. 1997. Recent solution structures of RNA and its complexes with drugs, peptides and proteins. Curr. Opin. Struct. Biol. 7: 317 ‐ 323.
dc.identifier.citedreferenceRecht, M.I., Fourmy, D., Blanchard, S.C., Dahlquist, K.D., and Puglisi, J.D. 1996. RNA sequence determinants for aminoglycoside binding to an A‐site rRNA model oligonucleotide. J. Mol. Biol. 262: 421 ‐ 436.
dc.identifier.citedreferenceRief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M., and Gaub, H.E. 1997. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276: 1109 ‐ 1112.
dc.identifier.citedreferenceRippe, K., Guthold, M., von Hippel, P.H., and Bustamante, C. 1997. Transcriptional activation via DNA‐looping: Visualization of intermediates in the activation pathway of E. coli RNA poly‐merase x sigma 54 holoenzyme by scanning force microscopy. J. Mol. Biol. 270: 125 ‐ 138.
dc.identifier.citedreferenceRoberts, G.C.K. 1993. NMR of Macromolecules. A Practical Approach. IRL Press, New York.
dc.identifier.citedreferenceRugar, D., Zuger, O., Hoen, S., Yanonni, C.S., Vieth, H.‐M., and Kendrick, R.D. 1994. Force detection of nuclear magnetic resonance. Science 264: 1560 ‐ 1563.
dc.identifier.citedreferenceSaenger, W. 1984. Principles of Nucleic Acid Structure. Springer‐Verlag, New York.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.