Show simple item record

Giant Thermal Expansion in 2D and 3D Cellular Materials

dc.contributor.authorZhu, Hanxing
dc.contributor.authorFan, Tongxiang
dc.contributor.authorPeng, Qing
dc.contributor.authorZhang, Di
dc.date.accessioned2018-05-15T20:15:13Z
dc.date.available2019-07-01T14:52:17Zen
dc.date.issued2018-05
dc.identifier.citationZhu, Hanxing; Fan, Tongxiang; Peng, Qing; Zhang, Di (2018). "Giant Thermal Expansion in 2D and 3D Cellular Materials." Advanced Materials 30(18): n/a-n/a.
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.urihttps://hdl.handle.net/2027.42/143739
dc.description.abstractWhen temperature increases, the volume of an object changes. This property was quantified as the coefficient of thermal expansion only a few hundred years ago. Part of the reason is that the change of volume due to the variation of temperature is in general extremely small and imperceptible. Here, abnormal giant linear thermal expansions in different types of two‐ingredient microstructured hierarchical and self‐similar cellular materials are reported. The cellular materials can be 2D or 3D, and isotropic or anisotropic, with a positive or negative thermal expansion due to the convex or/and concave shape in their representative volume elements respectively. The magnitude of the thermal expansion coefficient can be several times larger than the highest value reported in the literature. This study suggests an innovative approach to develop temperature‐sensitive functional materials and devices.Single‐level or hierarchical cellular materials can be two‐dimensional or three‐dimensional, isotropic or anisotropic, and have a positive or negative coefficient of linear thermal expansion due to the convex or/and concave shape in their representative volume elements (RVEs). The magnitude of the thermal expansion coefficient could be several times larger than the highest value reported in the literature.
dc.publisherPergamon Press
dc.publisherWiley Periodicals, Inc.
dc.subject.other2D cellular materials
dc.subject.other3D cellular materials
dc.subject.otherstructural hierarchy
dc.subject.otherthermal expansion
dc.titleGiant Thermal Expansion in 2D and 3D Cellular Materials
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143739/1/adma201705048.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143739/2/adma201705048-sup-0001-S1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143739/3/adma201705048_am.pdf
dc.identifier.doi10.1002/adma.201705048
dc.identifier.sourceAdvanced Materials
dc.identifier.citedreferenceR. Lakes, Nature 1993, 361, 511.
dc.identifier.citedreferenceA. W. Sleight, Annu. Rev. Mater. Sci. 1998, 8, 29.
dc.identifier.citedreferenceA. K. A. Pryde, K. D. Hammonds, M. T. Dover, V. Heine, J. D. Gales, M. C. Warren, J. Phys.: Condens. Matter. 1996, 8, 10973.
dc.identifier.citedreferenceJ. S. O. Evans, T. A. Mary, A. W. Sleight, J. Solid State Chem. 1998, 137, 148.
dc.identifier.citedreferenceA. E. Phillips, A. L. Goodwin, G. J. Halder, P. D. Southon, C. J. Kepert, Angew. Chem., Int. Ed. 2008, 47, 1396.
dc.identifier.citedreferenceM. Azuma, W. Chen, H. Seki, M. Czapski, S. Olga, K. Oka, M. Mizumaki, T. Watanuki, N. Ishimatsu, N. Kawamura, S. Ishiwata, M. G. Tucker, Y. Shimakawa, J. P. Attfield, Nat. Commun. 2011, 2, 347.
dc.identifier.citedreferenceJ. Chen, F. Wang, Q. Huang, L. Hu, X. Song, J. Deng, R. Yu, X. Xing, Sci. Rep. 2013, 3, 2458.
dc.identifier.citedreferenceJ. Chen, L. Hu, J. Deng, X. Xing, Chem. Soc. Rev. 2015, 44, 3522.
dc.identifier.citedreferenceJ. A. Burg, R. H. Dauskerdt, Nat. Mater. 2016, 15, 974.
dc.identifier.citedreferenceJ. Gribb, Nature 1968, 220, 576.
dc.identifier.citedreferenceR. A. Schapery, J. Compos. Mater. 1968, 2, 380.
dc.identifier.citedreferenceB. W. Rozen, Z. Hashin, Int. J. Eng. Sci. 1970, 8, 157.
dc.identifier.citedreferenceO. Sigmund, S. Torquato, Appl. Phys. Lett. 1996, 69, 3203.
dc.identifier.citedreferenceR. Lakes, Appl. Phys. Lett. 2007, 90, 221905.
dc.identifier.citedreferenceQ. Wang, J. A. Jackson, Q. Ge, J. B. Hopkins, C. M. Spadaccini, N. X. Fang, Phys. Rev. Lett. 2016, 117, 175901.
dc.identifier.citedreferenceL. Wu, B. Li, J. Zhou, ACS Appl. Mater. Interfaces 2016, 8, 17721.
dc.identifier.citedreferenceB. Ji, H. Gao, J. Mech. Phys. Solids 2004, 52, 1963.
dc.identifier.citedreferenceH. X. Zhu, L. Yan, R. Zhang, X. M. Qiu, Acta Mater. 2012, 60, 4927.
dc.identifier.citedreferenceH. X. Zhu, Z. B. Wang, Sci. Adv. Mater. 2013, 5, 677.
dc.identifier.citedreferenceX. Zheng, H. Lee, T. H. Weisgraber, M. Shusteff, J. DeOtte, E. B. Duoss, J. D. Kuntz, M. M. Biener, Q. Ge, J. A. Jackson, S. O. Kucheyev, N. X. Fang, C. M. Spadaccini, Science 2014, 344, 1373.
dc.identifier.citedreferenceH. X. Zhu, J. F. Knott, N. J. Mills, J. Mech. Phys. Solids 1997, 45, 319.
dc.identifier.citedreferenceB. Deng, J. Hu, H. Zhu, S. Liu, L. Liu, Y. Shi, Q. Peng, 2D Mater. 2017, 4, 021020.
dc.identifier.citedreferenceX. Zheng, W. Smith, J. Jackson, B. Moran, H. Cui, D. Chen, J. Ye, N. Fang, N. Rogriguez, T. Weisgraber, C. M. Spadaccini, Nat. Mater. 2016, 15, 1100.
dc.identifier.citedreferenceL. J. Gibson, M. F. Ashby, Cellular Solids, Pergamon Press, Oxford, UK 1997.
dc.identifier.citedreferenceR. Lakes, J. Mater. Lett. 1996, 15, 475.
dc.identifier.citedreferenceT. A. Mary, J. S. O. Evans, T. Vogt, A.W. Sleight, Science 1996, 272, 90.
dc.identifier.citedreferenceA. L. Goodwin, M. Calleja, M. J. Conterio, M. T. Dove, J. S. O. Evans, D. A. Keen, Science 2008, 319, 794.
dc.identifier.citedreferenceX. G. Zheng, H. Kubozono, H. Yamada, K. Kato, Y. Ishiwata, C. N. Xu, Nat. Nanotechnol. 2008, 3, 724.
dc.identifier.citedreferenceD. Das, T. Jacobs, L. J. Barbour, Nat. Mater. 2010, 9, 36.
dc.identifier.citedreferenceX. Shen, C. Viney, E. R. Johnson, C. Wang, J. Q. Lu, Nat. Chem. 2013, 5, 1035.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.