Show simple item record

5′‐Iodination of Solid‐Phase‐Linked Oligodeoxyribonucleotides

dc.contributor.authorKool, Eric T.
dc.contributor.authorMiller, Gregory P.
dc.date.accessioned2018-05-15T20:15:19Z
dc.date.available2018-05-15T20:15:19Z
dc.date.issued2003-09
dc.identifier.citationKool, Eric T.; Miller, Gregory P. (2003). "5′‐Iodination of Solid‐Phase‐Linked Oligodeoxyribonucleotides." Current Protocols in Nucleic Acid Chemistry 14(1): 4.19.1-4.19.8.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/143744
dc.description.abstract5′‐Iodinated oligodeoxyribonucleotides readily react with 3′‐phosphorothioated DNA in the presence of a complementary template to yield a conjugate that is identical to natural DNA in every respect except that one oxygen atom in the phosphodiester backbone is replaced by a sulfur atom. The 5′‐iodo group is easily converted to a variety of other functional groups and will quickly react with thiol‐containing labels to yield stable thioether conjugates. This unit presents manual and automated procedures for converting the 5′‐hydroxyl of protected CPG–bound oligodeoxyribonucleotides to an iodo group and for releasing and purifying the products.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherelectrophile
dc.subject.otherligation
dc.subject.otheriodination
dc.subject.other5′‐modification
dc.subject.othersolid‐phase
dc.subject.otheroligodeoxyribonucleotide
dc.title5′‐Iodination of Solid‐Phase‐Linked Oligodeoxyribonucleotides
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143744/1/cpnc0419.pdf
dc.identifier.doi10.1002/0471142700.nc0419s14
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceMiller and Kool, 2002.See above.
dc.identifier.citedreferenceXu, Y. and Kool, E.T. 1998. Chemical and enzymatic properties of bridging 5′‐S‐phosphorothioester linkages in DNA. Nucl. Acids Res. 26: 3159 ‐ 3164.
dc.identifier.citedreferenceXu, Y. and Kool, E.T. 1997. A novel 5′‐iodonucleoside allows efficient non‐enzymatic ligation of single‐stranded and duplex DNAs. Tetrahedron Lett. 38: 5595 ‐ 5598.
dc.identifier.citedreferenceDimitrijevich, S.D., Verheyden, J.P.H., and Moffatt, J.G. 1979. Halo sugar nucleosides. 6. Synthesis of some 5′‐deoxy‐5′‐iodo and 4′,5′‐unsaturated purine nucleosides. J. Org. Chem. 44: 400 ‐ 406.
dc.identifier.citedreferenceMiller, G.P. and Kool, E.T. 2002. A simple method for electrophilic functionalization of DNA. Org. Lett. 4: 3599 ‐ 3601.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.