Show simple item record

Low‐Fe(III) Greenalite Was a Primary Mineral From Neoarchean Oceans

dc.contributor.authorJohnson, Jena E.
dc.contributor.authorMuhling, Janet R.
dc.contributor.authorCosmidis, Julie
dc.contributor.authorRasmussen, Birger
dc.contributor.authorTempleton, Alexis S.
dc.date.accessioned2018-05-15T20:15:22Z
dc.date.available2019-06-03T15:24:19Zen
dc.date.issued2018-04-16
dc.identifier.citationJohnson, Jena E.; Muhling, Janet R.; Cosmidis, Julie; Rasmussen, Birger; Templeton, Alexis S. (2018). "Low‐Fe(III) Greenalite Was a Primary Mineral From Neoarchean Oceans." Geophysical Research Letters 45(7): 3182-3192.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/143747
dc.description.abstractBanded iron formations (BIFs) represent chemical precipitation from Earth’s early oceans and therefore contain insights into ancient marine biogeochemistry. However, BIFs have undergone multiple episodes of alteration, making it difficult to assess the primary mineral assemblage. Nanoscale mineral inclusions from 2.5 billion year old BIFs and ferruginous cherts provide new evidence that iron silicates were primary minerals deposited from the Neoarchean ocean, contrasting sharply with current models for BIF inception. Here we used multiscale imaging and spectroscopic techniques to characterize the best preserved examples of these inclusions. Our integrated results demonstrate that these early minerals were low‐Fe(III) greenalite. We present potential pathways in which low‐Fe(III) greenalite could have formed through changes in saturation state and/or iron oxidation and reduction. Future constraints for ancient ocean chemistry and early life’s activities should include low‐Fe(III) greenalite as a primary mineral in the Neoarchean ocean.Plain Language SummaryChemical precipitates from Earth’s early oceans hold clues to ancient seawater chemistry and biological activities, but we first need to understand what the original minerals were in ancient marine deposits. We characterized nanoscale mineral inclusions from 2.5 billion year old banded iron formations and determined that the primary minerals were iron‐rich silicate minerals dominated by reduced iron, challenging current hypotheses for banded iron formation centered on iron oxides. Our results suggest that our planet at this time had a very reducing ocean and further enable us to present several biogeochemical mineral formation hypotheses that can now be tested to better understand the activities of early life on ancient Earth.Key PointsNeoarchean nanoparticle silicate inclusions appear to be the earliest iron mineral preserved in cherts from Australia and South AfricaOur multiscale analyses indicate that the particles are greenalite that are dominantly Fe(II) with have low and variable Fe(III) contentWe present four (bio)geochemical hypotheses that could produce low‐Fe(III) greenalite
dc.publisherUniversity of Illinois
dc.publisherWiley Periodicals, Inc.
dc.subject.othernanoparticle inclusions
dc.subject.otherPrecambrian
dc.subject.otherchert
dc.subject.otheriron silicates
dc.subject.otherbanded iron formations
dc.titleLow‐Fe(III) Greenalite Was a Primary Mineral From Neoarchean Oceans
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143747/1/grl57046_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143747/2/grl57046.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143747/3/grl57046-sup-0001-2017GL076311-SI.pdf
dc.identifier.doi10.1002/2017GL076311
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceRasmussen, B., & Buick, R. ( 1999 ). Redox state of the Archean atmosphere: Evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia. Geology, 27 ( 2 ), 115 – 118. https://doi.org/10.1130/0091-7613(1999)027%3C0115:RSOTAA%3E2.3.CO;2
dc.identifier.citedreferencePufahl, P. K., & Hiatt, E. E. ( 2012 ). Oxygenation of the Earth’s atmosphere–ocean system: A review of physical and chemical sedimentologic responses. Marine and Petroleum Geology, 32 ( 1 ), 1 – 20.
dc.identifier.citedreferenceRasmussen, B., Krapež, B., Muhling, J. R., & Suvorova, A. ( 2015 ). Precipitation of iron silicate nanoparticles in early Precambrian oceans marks Earth’s first iron age. Geology, 43, 303 – 306.
dc.identifier.citedreferenceRasmussen, B., Muhling, J. R., Suvorova, A., & Krapež, B. ( 2016 ). Dust to dust: Evidence for the formation of “primary” hematite dust in banded iron formations via oxidation of iron silicate nanoparticles. Precambrian Research, 284 ( Supplement C ), 49 – 63. https://doi.org/10.1016/j.precamres.2016.07.003
dc.identifier.citedreferenceRasmussen, B., Muhling, J. R., Suvorova, A., & Krapež, B. ( 2017 ). Greenalite precipitation linked to the deposition of banded iron formations downslope from a late Archean carbonate platform. Precambrian Research, 290 ( Supplement C ), 49 – 62. https://doi.org/10.1016/j.precamres.2016.12.005
dc.identifier.citedreferenceRimstidt, J. D., & Barnes, H. L. ( 1980 ). The kinetics of silica‐water reactions. Geochimica et Cosmochimica Acta, 44 ( 11 ), 1683 – 1699.
dc.identifier.citedreferenceRye, R., & Holland, H. D. ( 1998 ). Paleosols and the evolution of atmospheric oxygen: A critical review. American Journal of Science, 298 ( 8 ), 621 – 672.
dc.identifier.citedreferenceSchaefer, M. V., Gorski, C. A., & Scherer, M. M. ( 2011 ). Spectroscopic evidence for interfacial Fe(II)−Fe(III) electron transfer in a clay mineral. Environmental Science & Technology, 45 ( 2 ), 540 – 545.
dc.identifier.citedreferenceSiever, R. ( 1992 ). The silica cycle in the Precambrian. Geochimica et Cosmochimica Acta, 56 ( 8 ), 3265 – 3272.
dc.identifier.citedreferenceSimonson, B. M. ( 2003 ). Origin and evolution of large Precambrian iron formations. In M. A.   Chan & A. W.   Archer (Eds.), Extreme depositional environments: Mega end members in geologic time, Geological Society of America Special Paper (Vol. 370, pp. 231 – 244 ). Boulder, CO.
dc.identifier.citedreferenceSmith, R. E., Perdrix, J. L., & Parks, T. C. ( 1982 ). Burial metamorphism in the Hamersley Basin, Western Australia. Journal of Petrology, 23 ( 1 ), 75 – 102.
dc.identifier.citedreferenceSpencer, E., & Percival, F. G. ( 1952 ). The structure and origin of the banded hematite jaspers of Singhbhum, India. Economic Geology, 47 ( 4 ), 365 – 383.
dc.identifier.citedreferenceSpurr, J. E. ( 1894 ). The iron‐bearing rocks of the Mesabi Range in Minnesota. 10
dc.identifier.citedreferenceStefurak, E. J. T., Lowe, D. R., Zentner, D., & Fischer, W. W. ( 2014 ). Primary silica granules—A new mode of Paleoarchean sedimentation. Geology, 42 ( 4 ), 283 – 286.
dc.identifier.citedreferenceStefurak, E. J. T., Lowe, D. R., Zentner, D., & Fischer, W. W. ( 2015 ). Sedimentology and geochemistry of Archean silica granules. GSA Bulletin, 127 ( 7–8 ), 1090 – 1107.
dc.identifier.citedreferenceSumner, D. Y., & Bowring, S. A. ( 1996 ). U‐Pb geochronologic constraints on deposition of the Campbellrand subgroup, Transvaal Supergroup, South Africa. Precambrian Research, 79 ( 1–2 ), 25 – 35.
dc.identifier.citedreferenceSun, S., Konhauser, K. O., Kappler, A., & Li, Y.‐L. ( 2015 ). Primary hematite in Neoarchean to Paleoproterozoic oceans. GSA Bulletin, 127 ( 5–6 ), 850 – 861.
dc.identifier.citedreferenceTosca, N. J., Guggenheim, S., & Pufahl, P. K. ( 2016 ). An authigenic origin for Precambrian greenalite: Implications for iron formation and the chemistry of ancient seawater. GSA Bulletin, 128 ( 3–4 ), 511 – 530.
dc.identifier.citedreferenceUrrutia, M. M., & Beveridge, T. J. ( 1994 ). Formation of fine‐grained metal and silicate precipitates on a bacterial surface (Bacillus subtilis). Chemical Geology, 116 ( 3–4 ), 261 – 280.
dc.identifier.citedreferenceVoegelin, A., Senn, A.‐C., Kaegi, R., Hug, S. J., & Mangold, S. ( 2013 ). Dynamic Fe‐precipitate formation induced by Fe(II) oxidation in aerated phosphate‐containing water. Geochimica et Cosmochimica Acta, 117 ( Supplement C ), 216 – 231. https://doi.org/10.1016/j.gca.2013.04.022
dc.identifier.citedreferenceWebb, S. M. ( 2005 ). SIXpack: A graphical user interface for XAS analysis using IFEFFIT. Physica Scripta, 2005 ( T115 ), 1011.
dc.identifier.citedreferenceWinchell, N. H., Grant, U. S., Todd, J. E., Upham, W., & Winchell, H. V. ( 1899 ). The geology of Minnesota. Volume 4 of the Final Report. 4
dc.identifier.citedreferenceWu, W., Swanner, E. D., Hao, L., Zeitvogel, F., Obst, M., et al. ( 2014 ). Characterization of the physiology and cell‐mineral interactions of the marine anoxygenic phototrophic Fe(II) oxidizer Rhodovulum iodosum‐‐implications for Precambrian Fe(II) oxidation. FEMS Microbiology Ecology, 88 ( 3 ), 503 – 515.
dc.identifier.citedreferenceZegeye, A., Bonneville, S., Benning, L. G., Sturm, A., Fowle, D. A., et al. ( 2012 ). Green rust formation controls nutrient availability in a ferruginous water column. Geology, 40 ( 7 ), 599 – 602.
dc.identifier.citedreferenceAbrajevitch, A., Pillans, B. J., & Roberts, A. P. ( 2014 ). Haematite pigmentation events and palaeomagnetic recording: Implications from the Pilbara Print Stone, Western Australia. Geophysical Journal International, 199, 658 – 672.
dc.identifier.citedreferenceAller, R. C., Mackin, J. E., & Cox, R. T. Jr. ( 1986 ). Diagenesis of Fe and S in Amazon inner shelf muds: Apparent dominance of Fe reduction and implications for the genesis of ironstones. Continental Shelf Research, 6 ( 1–2 ), 263 – 289.
dc.identifier.citedreferenceAyres, D. E. ( 1972 ). Genesis of iron‐bearing minerals in banded iron formation Mesobands in the Dales Gorge Member, Hamersley Group, Western Australia. Economic Geology, 67 ( 8 ), 1214 – 1233. https://doi.org/10.2113/gsecongeo.67.8.1214
dc.identifier.citedreferenceBecker, R. H., & Clayton, R. N. ( 1972 ). Carbon isotopic evidence for the origin of a banded iron‐formation in Western Australia. Geochimica et Cosmochimica Acta, 36 ( 5 ), 577 – 595. https://doi.org/10.1016/0016-7037(72)90077-4
dc.identifier.citedreferenceBekker, A., Planavsky, N. J., Krapež, B., Rasmussen, B., Hofmann, A., et al. ( 2014 ). Iron formations: Their origins and implications for ancient seawater chemistry. Treatise Geochem. Second Ed., 9, 561 – 628.
dc.identifier.citedreferenceBethke, C. M. ( 2002 ). The geochemist’s workbench: A user’s guide to Rxn, Act2, Tact, React, and Gtplot ( 4.0 ed.). Urbana, IL: University of Illinois.
dc.identifier.citedreferenceBeukes, N. J. ( 1984 ). Sedimentology of the Kuruman and Griquatown iron‐formations, Transvaal Supergroup, Griqualand West, South Africa. Precambrian Research, 24 ( 1 ), 47 – 84.
dc.identifier.citedreferenceBeukes, N. J., & Gutzmer, J. ( 2008 ). Origin and paleoenvironmental significance of major iron formations at the Archean‐Paleoproterozoic boundary. In S.   Hagemann, et al. (Eds.), Banded iron formation-related high-grade ore (Vol. 15, pp. 5 – 47 ). Littleton, CO: Society of Economic Geologists, SEG Reviews.
dc.identifier.citedreferenceBeukes, N. J., Klein, C., Kaufman, A. J., & Hayes, J. M. ( 1990 ). Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron‐formation deposition, Transvaal Supergroup, South Africa. Economic Geology and the Bulletin of the Society of Economic Geologists, 85 ( 4 ), 663 – 690. https://doi.org/10.2113/gsecongeo.85.4.663
dc.identifier.citedreferenceBjerrum, C. J., & Canfield, D. E. ( 2002 ). Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature, 417 ( 6885 ), 159 – 162.
dc.identifier.citedreferenceBourdelle, F., Benzerara, K., Beyssac, O., Cosmidis, J., Neuville, D. R., Brown, G. E., & Paineau, E. ( 2013 ). Quantification of the ferric/ferrous iron ratio in silicates by scanning transmission X‐ray microscopy at the Fe L 2,3 edges. Contributions to Mineralogy and Petrology, 166 ( 2 ), 423 – 434. https://doi.org/10.1007/s00410-013-0883-4
dc.identifier.citedreferenceCloud, P. ( 1973 ). Paleoecological significance of the banded iron‐formation. Economic Geology, 68 ( 7 ), 1135 – 1143.
dc.identifier.citedreferenceClout, J. M. F., & Simonson, B. M. ( 2005 ). Precambrian iron formations and iron formation‐hosted iron ore deposits. Economic Geology, 100th Anniversary Volume, 643 – 679.
dc.identifier.citedreferenceCosmidis, J., & Benzerara, K. ( 2014 ). Soft X‐ray scanning transmission spectromicroscopy. In E.   DiMasi & L. B.   Gower (Eds.), Biomineralization sourcebook: Characterization of biominerals and biomimetic materials (pp. 115 – 133 ). Boca Raton, FL: CRC Press. https://doi.org/10.1201/b16621-11
dc.identifier.citedreferenceCosmidis, J., Benzerara, K., Morin, G., Busigny, V., Lebeau, O., et al. ( 2014 ). Biomineralization of iron‐phosphates in the water column of Lake Pavin (Massif Central, France). Geochimica et Cosmochimica Acta, 126, 78 – 96.
dc.identifier.citedreferencede Kock, M. O., Evans, D. A. D., Kirschvink, J. L., Beukes, N. J., Rose, E., & Hilburn, I. ( 2009 ). Paleomagnetism of a Neoarchean‐Paleoproterozoic carbonate ramp and carbonate platform succession (Transvaal Supergroup) from surface outcrop and drill core, Griqualand west region, South Africa. Precambrian Research, 169 ( 1–4 ), 80 – 99.
dc.identifier.citedreferenceDimroth, E., & Chauvel, J.‐J. ( 1973 ). Petrography of the Sokoman Iron Formation in part of the Central Labrador Trough, Quebec, Canada. GSA Bulletin, 84 ( 1 ), 111 – 134. https://doi.org/10.1130/0016-7606(1973)84%3C111:POTSIF%3E2.0.CO;2
dc.identifier.citedreferenceDong, H., Jaisi, D. P., Kim, J., & Zhang, G. ( 2009 ). Microbe‐clay mineral interactions. American Mineralogist, 94 ( 11–12 ), 1505 – 1519.
dc.identifier.citedreferenceEickhoff, M., Obst, M., Schröder, C., Hitchcock, A. P., Tyliszczak, T., Martinez, R. E., et al. ( 2014 ). Nickel partitioning in biogenic and abiogenic ferrihydrite: The influence of silica and implications for ancient environments. Geochimica et Cosmochimica Acta, 140 ( Supplement C ), 65 – 79. https://doi.org/10.1016/j.gca.2014.05.021
dc.identifier.citedreferenceEugster, H. P., & Chou, I.‐M. ( 1973 ). The depositional environments of Precambrian banded iron‐formations. Economic Geology, 68 ( 7 ), 1144 – 1168.
dc.identifier.citedreferenceFarquhar, J., Zerkle, A. L., & Bekker, A. ( 2011 ). Geological constraints on the origin of oxygenic photosynthesis. Photosynthesis Research, 107 ( 1 ), 11 – 36.
dc.identifier.citedreferenceFeininger, T. ( 1984 ). Stilpnomelane in metasomatic rocks associated with steatite and in regional schists, Quebec Appalachians. The Canadian Mineralogist, 22 ( 3 ), 423 – 435.
dc.identifier.citedreferenceFischer, W. W., & Knoll, A. H. ( 2009 ). An iron shuttle for deepwater silica in Late Archean and Early Paleoproterozoic iron formation. Geological Society of America Bulletin, 121 ( 1–2 ), 222 – 235.
dc.identifier.citedreferenceFrei, R., Gaucher, C., Poulton, S. W., & Canfield, D. E. ( 2009 ). Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature, 461 ( 7261 ), 250 – 253.
dc.identifier.citedreferenceGauger, T., Byrne, J. M., Konhauser, K. O., Obst, M., Crowe, S., & Kappler, A. ( 2016 ). Influence of organics and silica on Fe(II) oxidation rates and cell–mineral aggregate formation by the green‐sulfur Fe(II)‐oxidizing bacterium Chlorobium ferrooxidans KoFox—Implications for Fe(II) oxidation in ancient oceans. Earth and Planetary Science Letters, 443 ( supplement C ), 81 – 89. https://doi.org/10.1016/j.epsl.2016.03.022
dc.identifier.citedreferenceGorski, C. A., Aeschbacher, M., Soltermann, D., Voegelin, A., Baeyens, B., Marques Fernandes, M., et al. ( 2012 ). Redox properties of structural Fe in clay minerals. 1. Electrochemical quantification of electron‐donating and ‐accepting capacities of smectites. Environmental Science & Technology, 46 ( 17 ), 9360 – 9368. https://doi.org/10.1021/es3020138
dc.identifier.citedreferenceGuggenheim, S., Bailey, S. W., Eggleton, R. A., & Wilkes, P. ( 1982 ). Structural aspects of greenalite and related minerals. The Canadian Mineralogist, 20, 1 – 18.
dc.identifier.citedreferenceHalevy, I., Alesker, M., Schuster, E. M., Popovitz‐Biro, R., & Feldman, Y. ( 2017 ). A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nature Geoscience, 10 ( 2 ), 135 – 139.
dc.identifier.citedreferenceHalevy, I., & Bachan, A. ( 2017 ). The geologic history of seawater pH. Science, 355 ( 6329 ), 1069 – 1071.
dc.identifier.citedreferenceHaugaard, R., Pecoits, E., Lalonde, S., Rouxel, O., & Konhauser, K. ( 2016 ). The Joffre banded iron formation, Hamersley Group, Western Australia: Assessing the palaeoenvironment through detailed petrology and chemostratigraphy. Precambrian Research, 273 ( supplement C ), 12 – 37. https://doi.org/10.1016/j.precamres.2015.10.024
dc.identifier.citedreferenceHitchcock A. P. ( 2014 ). aXis2000 is written in Interactive Data Language (IDL). It is available free for non‐commercial use from < http://unicorn.mcmaster.ca/aXis2000.html/ >
dc.identifier.citedreferenceHumbert, F., Sonnette, L., de Kock, M. O., Robion, P., Horng, C. S., et al. ( 2017 ). Palaeomagnetism of the early Palaeoproterozoic, volcanic Hekpoort Formation (Transvaal Supergroup) of the Kaapvaal craton, South Africa. Geophysical Journal International, 209 ( 2 ), 842 – 865.
dc.identifier.citedreferenceJames, H. L. ( 1954 ). Sedimentary facies of iron‐formation. Economic Geology and the Bulletin of the Society of Economic Geologists, 49 ( 3 ), 235 – 293.
dc.identifier.citedreferenceJohnson, C. M., Ludois, J. M., Beard, B. L., Beukes, N. J., & Heimann, A. ( 2013 ). Iron formation carbonates: Paleoceanographic proxy or recorder of microbial diagenesis? Geology, 41 ( 11 ), 1147 – 1150.
dc.identifier.citedreferenceJohnson, J. E., Gerpheide, A., Lamb, M. P., & Fischer, W. W. ( 2014 ). O 2 constraints from Paleoproterozoic detrital pyrite and uraninite. Geological Society of America Bulletin, 126 ( 5–6 ), 813 – 830. https://doi.org/10.1130/B30949.1
dc.identifier.citedreferenceKappler, A., & Newman, D. K. ( 2004 ). Formation of Fe(III)‐minerals by Fe(II)‐oxidizing photoautotrophic bacteria. Geochimica et Cosmochimica Acta, 68 ( 6 ), 1217 – 1226. https://doi.org/10.1016/j.gca.2003.09.006
dc.identifier.citedreferenceKlein, C. ( 1974 ). Greenalite, stilpnomelane, minnesotaite, crocidolite and carbonates in a very low‐grade metamorphic Precambrian iron formation. The Canadian Mineralogist, 12 ( 7 ), 475 – 498.
dc.identifier.citedreferenceKlein, C. ( 2005 ). Some Precambrian banded iron‐formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. American Mineralogist, 90 ( 10 ), 1473 – 1499.
dc.identifier.citedreferenceKlein, C., & Beukes, N. J. ( 1989 ). Geochemistry and sedimentology of a facies transition from limestone to iron‐formation deposition in the early Proterozoic Transvaal Supergroup, South Africa. Economic Geology, 84 ( 7 ), 1733 – 1774.
dc.identifier.citedreferenceKomlos, J., Kukkadapu, R. K., Zachara, J. M., & Jaffé, P. R. ( 2007 ). Biostimulation of iron reduction and subsequent oxidation of sediment containing Fe‐silicates and Fe‐oxides: Effect of redox cycling on Fe(III) bioreduction. Water Research, 41 ( 13 ), 2996 – 3004.
dc.identifier.citedreferenceKonhauser, K. O., Amskold, L., Lalonde, S. V., Posth, N. R., Kappler, A., & Anbar, A. ( 2007 ). Decoupling photochemical Fe(II) oxidation from shallow‐water BIF deposition. Earth and Planetary Science Letters, 258 ( 1‐2 ), 87 – 100. https://doi.org/10.1016/j.epsl.2007.03.026
dc.identifier.citedreferenceKonhauser, K. O., & Ferris, F. G. ( 1996 ). Diversity of iron and silica precipitation by microbial mats in hydrothermal waters, Iceland: Implications for Precambrian iron formations. Geology, 24 ( 4 ), 323 – 326. https://doi.org/10.1130/0091-7613(1996)024%3C0323:DOIASP%3E2.3.CO;2
dc.identifier.citedreferenceKonhauser, K. O., Pecoits, E., Lalonde, S. V., Papineau, D., Nisbet, E. G., et al. ( 2009 ). Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature, 458 ( 7239 ), 750 – 753.
dc.identifier.citedreferenceKonhauser, K. O., & Urrutia, M. M. ( 1999 ). Bacterial clay authigenesis: A common biogeochemical process. Chemical Geology, 161 ( 4 ), 399 – 413.
dc.identifier.citedreferenceKostka, J. E., Haefele, E., Viehweger, R., & Stucki, J. W. ( 1999 ). Respiration and dissolution of iron(III)‐containing clay minerals by bacteria. Environmental Science & Technology, 33 ( 18 ), 3127 – 3133.
dc.identifier.citedreferenceKrivovichev, S. V. ( 2013 ). Structural complexity of minerals: Information storage and processing in the mineral world. Mineralogical Magazine, 77 ( 3 ), 275 – 326.
dc.identifier.citedreferenceLaberge, G. L. ( 1986 ). A model for the biological precipitation of Precambrian iron‐formation. http://adsabs.harvard.edu/abs/1986ecgw.work...71L
dc.identifier.citedreferenceLeith, C. K. ( 1903 ). The Mesabi iron‐bearing district of Minnesota. U.S. Geological Survey Monograph, 43. (316 pp.).
dc.identifier.citedreferenceLi, Z., Powell, C., & Bowman, R. ( 1993 ). Timing and genesis of Hamersley iron‐ore deposits. Exploration Geophysics, 24 ( 4 ), 631 – 636. https://doi.org/10.1071/EG993631
dc.identifier.citedreferenceMaliva, R. G., Knoll, A. H., & Simonson, B. M. ( 2005 ). Secular change in the Precambrian silica cycle: Insights from chert petrology. GSA Bulletin, 117 ( 7 ), 835 – 845. https://doi.org/10.1130/B25555.1
dc.identifier.citedreferenceMiot, J., Benzerara, K., Morin, G., Kappler, A., Bernard, S., et al. ( 2009 ). Iron biomineralization by anaerobic neutrophilic iron‐oxidizing bacteria. Geochimica et Cosmochimica Acta, 73 ( 3 ), 696 – 711.
dc.identifier.citedreferenceWalker, J. C. G. ( 1984 ). Suboxic diagenesis in banded iron formations. Nature, 309 ( 5966 ), 340 – 342.
dc.identifier.citedreferenceMiyano, T., & Beukes, N. J. ( 1984 ). Phase relations of stilpnomelane, ferri‐annite, and riebeckite in very low‐grade metamorphosed iron‐formations. South African Journal of Geology, 87 ( 2 ), 111 – 124.
dc.identifier.citedreferencePickard, A. L. ( 2002 ). SHRIMP U–Pb zircon ages of tuffaceous mudrocks in the Brockman Iron Formation of the Hamersley Range, Western Australia. Australian Journal of Earth Sciences, 49 ( 3 ), 491 – 507.
dc.identifier.citedreferencePosth, N. R., Canfield, D. E., & Kappler, A. ( 2014 ). Biogenic Fe(III) minerals: From formation to diagenesis and preservation in the rock record. Earth Science Reviews, 135 ( Supplement C ), 103 – 121. https://doi.org/10.1016/j.earscirev.2014.03.012
dc.identifier.citedreferencePosth, N. R., Köhler, I., Swanner, D. E., Schröder, C., Wellmann, E., et al. ( 2013 ). Simulating Precambrian banded iron formation diagenesis. Chemical Geology, 362 ( Supplement C ), 66 – 73. https://doi.org/10.1016/j.chemgeo.2013.05.031
dc.identifier.citedreferencePrasad, N., & Roscoe, S. M. ( 1996 ). Evidence of anoxic to oxic atmospheric change during 2.45‐2.22 Ga from lower and upper sub‐Huronian paleosols, Canada. Catena, 27 ( 2 ), 105 – 121.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.