Show simple item record

Misfolded proinsulin in the endoplasmic reticulum during development of beta cell failure in diabetes

dc.contributor.authorArunagiri, Anoop
dc.contributor.authorHaataja, Leena
dc.contributor.authorCunningham, Corey N.
dc.contributor.authorShrestha, Neha
dc.contributor.authorTsai, Billy
dc.contributor.authorQi, Ling
dc.contributor.authorLiu, Ming
dc.contributor.authorArvan, Peter
dc.date.accessioned2018-05-15T20:15:23Z
dc.date.available2019-06-03T15:24:19Zen
dc.date.issued2018-04
dc.identifier.citationArunagiri, Anoop; Haataja, Leena; Cunningham, Corey N.; Shrestha, Neha; Tsai, Billy; Qi, Ling; Liu, Ming; Arvan, Peter (2018). "Misfolded proinsulin in the endoplasmic reticulum during development of beta cell failure in diabetes." Annals of the New York Academy of Sciences 1418(1): 5-19.
dc.identifier.issn0077-8923
dc.identifier.issn1749-6632
dc.identifier.urihttps://hdl.handle.net/2027.42/143748
dc.description.abstractThe endoplasmic reticulum (ER) is broadly distributed throughout the cytoplasm of pancreatic beta cells, and this is where all proinsulin is initially made. Healthy beta cells can synthesize 6000 proinsulin molecules per second. Ordinarily, nascent proinsulin entering the ER rapidly folds via the formation of three evolutionarily conserved disulfide bonds (B7–A7, B19–A20, and A6–A11). A modest amount of proinsulin misfolding, including both intramolecular disulfide mispairing and intermolecular disulfide‐linked protein complexes, is a natural by‐product of proinsulin biosynthesis, as is the case for many proteins. The steady‐state level of misfolded proinsulin—a potential ER stressor—is linked to (1) production rate, (2) ER environment, (3) presence or absence of naturally occurring (mutational) defects in proinsulin, and (4) clearance of misfolded proinsulin molecules. Accumulation of misfolded proinsulin beyond a certain threshold begins to interfere with the normal intracellular transport of bystander proinsulin, leading to diminished insulin production and hyperglycemia, as well as exacerbating ER stress. This is most obvious in mutant INS gene–induced Diabetes of Youth (MIDY; an autosomal dominant disease) but also likely to occur in type 2 diabetes owing to dysregulation in proinsulin synthesis, ER folding environment, or clearance.
dc.publisherElsevier/Academic Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMutant INS gene–induced Diabetes of Youth; MIDY
dc.subject.otherprotein aggregation
dc.subject.otherendoplasmic reticulum stress; ER
dc.subject.otherdisulfide mispairing
dc.subject.othersecretory protein synthesis
dc.subject.otherER‐associated degradation
dc.titleMisfolded proinsulin in the endoplasmic reticulum during development of beta cell failure in diabetes
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelScience (General)
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143748/1/nyas13531.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143748/2/nyas13531_am.pdf
dc.identifier.doi10.1111/nyas.13531
dc.identifier.sourceAnnals of the New York Academy of Sciences
dc.identifier.citedreferenceBachar‐Wikstrom, E., J.D. Wikstrom, N. Kaiser, et al. 2013. Improvement of ER stress‐induced diabetes by stimulating autophagy. Autophagy 9: 626 – 628.
dc.identifier.citedreferenceSugawara, T., F. Kano & M. Murata. 2014. Rab2A is a pivotal switch protein that promotes either secretion or ER‐associated degradation of (pro)insulin in insulin‐secreting cells. Sci. Rep. 4: 6952.
dc.identifier.citedreferenceAllen, J.R., L.X. Nguyen, K.E.G. Sargent, et al. 2004. High ER stress in beta‐cells stimulates intracellular degradation of misfolded insulin. Biochem. Biophys. Res. Commun. 324: 166 – 170.
dc.identifier.citedreferenceHartley, T., M. Siva, E. Lai, et al. 2010. Endoplasmic reticulum stress response in an INS‐1 pancreatic beta‐cell line with inducible expression of a folding‐deficient proinsulin. BMC Cell Biol. 11: 59.
dc.identifier.citedreferenceZhang, X., Q. Yuan, W. Tang, et al. 2011. Substrate‐favored lysosomal and proteasomal pathways participate in the normal balance control of insulin precursor maturation and disposal in β‐cells. PLoS One 6: e27647.
dc.identifier.citedreferenceHoelen, H., A. Zaldumbide, W.F. van Leeuwen, et al. 2015. Proteasomal degradation of proinsulin requires Derlin‐2, HRD1 and p97. PLoS One 10: e0128206.
dc.identifier.citedreferenceKobayashi, T., S. Ogawa, T. Yura, et al. 2000. Abundant expression of 150‐kDa oxygen‐regulated protein in mouse pancreatic beta cells is correlated with insulin secretion. Biochem. Biophys. Res. Commun. 267: 831 – 837.
dc.identifier.citedreferenceJung, H.S., K.W. Chung, J. Won Kim, et al. 2008. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab. 8: 318 – 324.
dc.identifier.citedreferenceBachar‐Wikstrom, E., J.D. Wikstrom, Y. Ariav, et al. 2013. Stimulation of autophagy improves endoplasmic reticulum stress‐induced diabetes. Diabetes 62: 1227 – 1237.
dc.identifier.citedreferenceRiahi, Y., J.D. Wikstrom, E. Bachar‐Wikstrom, et al. 2016. Autophagy is a major regulator of beta cell insulin homeostasis. Diabetologia 59: 1480 – 1491.
dc.identifier.citedreferencevan Raalte, D.H. & C.B. Verchere. 2017. Improving glycaemic control in type 2 diabetes: stimulate insulin secretion or provide beta‐cell rest ? Diabetes Obes. Metab. 19: 1205 – 1213.
dc.identifier.citedreferenceSeaquist, E.R., S.E. Kahn, P.M. Clark, et al. 1995. Hyperproinsulinemia is associated with increased beta cell demand after hemipancreatectomy in humans. J. Clin. Invest. 97: 455 – 460.
dc.identifier.citedreferenceAlarcon, C., J.L. Leahy, G.T. Schuppin, et al. 1995. Increased secretory demand rather than a defect in the proinsulin conversion mechanism causes hyperproinsulinemia in a glucose‐infusion rat model of non‐insulin‐dependent diabetes mellitus. J. Clin. Invest. 95: 1032 – 1039.
dc.identifier.citedreferenceImai, Y., A.D. Dobrian, M.A. Morris, et al. 2013. Islet inflammation: a unifying target for diabetes treatment ? Trends Endocrinol. Metab. 24: 351 – 360.
dc.identifier.citedreferenceHasnain, S.Z., J.B. Prins & M.A. McGuckin. 2016. Oxidative and endoplasmic reticulum stress in β‐cell dysfunction in diabetes. J. Mol. Endocrinol. 56: R33 – R54.
dc.identifier.citedreferenceZhao, Y., Q. Cao, Y. He, et al. 2017. Impairment of endoplasmic reticulum is involved in beta‐cell dysfunction induced by microcystin‐LR. Environ. Pollut. 223: 587 – 594.
dc.identifier.citedreferenceCnop, M., L. Ladriere, M. Igoillo‐Esteve, et al. 2010. Causes and cures for endoplasmic reticulum stress in lipotoxic β‐cell dysfunction. Diabetes Obes. Metab. 12 ( Suppl. 2 ): 76 – 82.
dc.identifier.citedreferenceCerasi, E. 2007. [And what about diabetes?]. Bull. Acad. Natl. Med. 191: 941 – 943; discussion 943.
dc.identifier.citedreferenceFonseca, S.G., S. Ishigaki, C.M. Oslowski, et al. 2010. Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells. J. Clin. Invest. 120: 744 – 755.
dc.identifier.citedreferenceRiggs, A.C., E. Bernal‐Mizrachi, M. Ohsugi, et al. 2005. Mice conditionally lacking the Wolfram gene in pancreatic islet beta cells exhibit diabetes as a result of enhanced endoplasmic reticulum stress and apoptosis. Diabetologia 48: 2313 – 2321.
dc.identifier.citedreferenceYamada, T., H. Ishihara, A. Tamura, et al. 2006. WFS1‐deficiency increases endoplasmic reticulum stress, impairs cell cycle progression and triggers the apoptotic pathway specifically in pancreatic beta‐cells. Hum. Mol. Genet. 15: 1600 – 1609.
dc.identifier.citedreferenceSandhu, M.S., M.N. Weedon, K.A. Fawcett, et al. 2007. Common variants in WFS1 confer risk of type 2 diabetes. Nat. Genet. 39: 951 – 953.
dc.identifier.citedreferenceDelepine, M., M. Nicolino, T. Barrett, et al. 2000. EIF2AK3, encoding translation initiation factor 2‐alpha kinase 3, is mutated in patients with Wolcott–Rallison syndrome. Nat. Genet. 25: 406 – 409.
dc.identifier.citedreferenceHarding, H.P. & D. Ron. 2002. Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51 ( Suppl. 3 ): S455 – S461.
dc.identifier.citedreferenceLawlor, N., S. Khetan, D. Ucar, et al. 2017. Genomics of islet (Dys)function and type 2 diabetes. Trends Genet. 33: 244 – 255.
dc.identifier.citedreferenceGorasia, D.G., N.L. Dudek, P.D. Veith, et al. 2015. Pancreatic beta cells are highly susceptible to oxidative and ER stresses during the development of diabetes. J. Proteome Res. 14: 688 – 699.
dc.identifier.citedreferenceRao, P., Y. Zhou, S.Q. Ge, et al. 2016. Validation of type 2 diabetes risk variants identified by genome‐wide association studies in Northern Han Chinese. Int. J. Environ. Res. Public Health 13: 863.
dc.identifier.citedreferenceMarchetti, P., M. Bugliani, R. Lupi, et al. 2007. The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients. Diabetologia 50: 2486 – 2494.
dc.identifier.citedreferenceCerasi, E., R. Nesher, M. Gadot, et al. 1995. Insulin secretion in obese and non‐obese NIDDM. Diabetes Res. Clin. Pract. 28 ( Suppl. ): S27 – S37.
dc.identifier.citedreferenceLaybutt, D.R., A.M. Preston, M.C. Akerfeldt, et al. 2007. Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50: 752 – 763.
dc.identifier.citedreferenceFonseca, S.G., J. Gromada & F. Urano. 2011. Endoplasmic reticulum stress and pancreatic β‐cell death. Trends Endocrinol. Metab. 22: 266 – 274.
dc.identifier.citedreferenceEizirik, D.L. & M. Cnop. 2010. ER stress in pancreatic beta cells: the thin red line between adaptation and failure. Sci. Signal. 3: pe7.
dc.identifier.citedreferenceOakes, S.A. & F.R. Papa. 2015. The role of endoplasmic reticulum stress in human pathology. Annu. Rev. Pathol. 10: 173 – 194.
dc.identifier.citedreferenceWang, M. & R.J. Kaufman. 2016. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529: 326 – 335.
dc.identifier.citedreferenceGurlo, T., S. Ryazantsev, C.J. Huang, et al. 2010. Evidence for proteotoxicity in beta cells in type 2 diabetes: toxic islet amyloid polypeptide oligomers form intracellularly in the secretory pathway. Am. J. Pathol. 176: 861 – 869.
dc.identifier.citedreferenceSun, J., J. Cui, Q. He, et al. 2015. Proinsulin misfolding and endoplasmic reticulum stress during the development and progression of diabetes. Mol. Aspects Med. 42: 105 – 118.
dc.identifier.citedreferenceMukherjee, A. & C. Soto. 2017. Prion‐like protein aggregates and type 2 diabetes. Cold Spring Harb. Perspect. Med. 7. https://doi.org/10.1101/cshperspect.a024315.
dc.identifier.citedreferenceWeiss, M.A. 2009. Proinsulin and the genetics of diabetes mellitus. J. Biol. Chem. 284: 19159 – 19163.
dc.identifier.citedreferenceZoete, V. & M. Meuwly. 2006. Importance of individual side chains for the stability of a protein fold: computational alanine scanning of the insulin monomer. J. Comput. Chem. 27: 1843 – 1857.
dc.identifier.citedreferenceSingh, R., R. Bansal, A.S. Rathore, et al. 2017. Equilibrium ensembles for insulin folding from bias‐exchange metadynamics. Biophys. J. 112: 1571 – 1585.
dc.identifier.citedreferenceBekard, I.B. & D.E. Dunstan. 2009. Tyrosine autofluorescence as a measure of bovine insulin fibrillation. Biophys. J. 97: 2521 – 2531.
dc.identifier.citedreferenceIvanova, M.I., S.A. Sievers, M.R. Sawaya, et al. 2009. Molecular basis for insulin fibril assembly. Proc. Natl. Acad. Sci. USA 106: 18990 – 18995.
dc.identifier.citedreferenceChiang, H.L., S.T. Ngo, C.J. Chen, et al. 2013. Oligomerization of peptides LVEALYL and RGFFYT and their binding affinity to insulin. PLoS One 8: e65358.
dc.identifier.citedreferenceHaataja, L., N. Manickam, A. Soliman, et al. 2016. Disulfide mispairing during proinsulin folding in the endoplasmic reticulum. Diabetes 65: 1050 – 1060.
dc.identifier.citedreferenceChan, S.J., P. Keim & D.F. Steiner. 1976. Cell‐free synthesis of rat preproinsulins: characterization and partial amino acid sequence determination. Proc. Natl. Acad. Sci. USA 73: 1964 – 1968.
dc.identifier.citedreferenceLiu, M., J. Wright, H. Guo, et al. 2014. Proinsulin entry and transit through the endoplasmic reticulum in pancreatic beta cells. Vitam. Horm. 95: 35 – 62.
dc.identifier.citedreferenceWoycechowsky, K.J. & R.T. Raines. 2000. Native disulfide bond formation in proteins. Curr. Opin. Chem. Biol. 4: 533 – 539.
dc.identifier.citedreferenceGuo, Z.Y., Z.S. Qiao & Y.M. Feng. 2008. The in vitro oxidative folding of the insulin superfamily. Antioxid. Redox Signal. 10: 127 – 139.
dc.identifier.citedreferenceZhang, B.Y., M. Liu & P. Arvan. 2003. Behavior in the eukaryotic secretory pathway of insulin‐containing fusion proteins and single‐chain insulins bearing various B‐chain mutations. J. Biol. Chem. 278: 3687 – 3693.
dc.identifier.citedreferenceLiu, M., J. Ramos‐Castañeda & P. Arvan. 2003. Role of the connecting peptide in insulin biosynthesis. J. Biol. Chem. 278: 14798 – 14805.
dc.identifier.citedreferenceLiu, M., Y. Li, D. Cavener, et al. 2005. Proinsulin disulfide maturation and misfolding in the endoplasmic reticulum. J. Biol. Chem. 280: 13209 – 13212.
dc.identifier.citedreferenceWicksteed, B., Y. Uchizono, C. Alarcon, et al. 2007. A cis‐element in the 5′ untranslated region of the preproinsulin mRNA (ppIGE) is required for glucose regulation of proinsulin translation. Cell Metab. 5: 221 – 227.
dc.identifier.citedreferenceDerewenda, U., Z. Derewenda, G.G. Dodson, et al. 1989. Molecular structure of insulin: the insulin monomer and its assembly. Br. Med. Bull. 45: 4 – 18.
dc.identifier.citedreferenceHuang, X.F. & P. Arvan. 1995. Intracellular transport of proinsulin in pancreatic beta‐cells. Structural maturation probed by disulfide accessibility. J. Biol. Chem. 270: 20417 – 20423.
dc.identifier.citedreferenceHaataja, L., E. Snapp, J. Wright, et al. 2013. Proinsulin intermolecular interactions during secretory trafficking in pancreatic β cells. J. Biol. Chem. 288: 1896 – 1906.
dc.identifier.citedreferenceHebert, D.N. & M. Molinari. 2007. In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol. Rev. 87: 1377 – 1408.
dc.identifier.citedreferenceWright, J., X. Wang, L. Haataja, et al. 2013. Dominant protein interactions that influence the pathogenesis of conformational diseases. J. Clin. Invest. 123: 3124 – 3134.
dc.identifier.citedreferenceKayo, T. & A. Koizumi. 1998. Mapping of murine diabetogenic gene mody on chromosome 7 at D7Mit258 and its involvement in pancreatic islet and beta cell development during the perinatal period. J. Clin. Invest. 101: 2112 – 2118.
dc.identifier.citedreferenceWang, J., T. Takeuchi, S. Tanaka, et al. 1999. A mutation in the insulin 2 gene induces diabetes with severe pancreatic beta‐cell dysfunction in the Mody mouse. J. Clin. Invest. 103: 27 – 37.
dc.identifier.citedreferenceLiu, M., I. Hodish, C.J. Rhodes, et al. 2007. Proinsulin maturation, misfolding, and proteotoxicity. Proc. Natl. Acad. Sci. USA 104: 15841 – 15846.
dc.identifier.citedreferenceHarding, H.P., H. Zeng, Y. Zhang, et al. 2001. Diabetes mellitus and exocrine pancreatic dysfunction in perk–/– mice reveals a role for translational control in secretory cell survival. Mol. Cell 7: 1153 – 1163.
dc.identifier.citedreferenceGilligan, M., G.I. Welsh, A. Flynn, et al. 1996. Glucose stimulates the activity of the guanine nucleotide‐exchange factor eIF‐2B in isolated rat islets of Langerhans. J. Biol. Chem. 271: 2121 – 2125.
dc.identifier.citedreferenceGomez, E., M.L. Powell, I.C. Greenman, et al. 2004. Glucose‐stimulated protein synthesis in pancreatic beta‐cells parallels an increase in the availability of the translational ternary complex (eIF2–GTP.Met–tRNAi) and the dephosphorylation of eIF2 alpha. J. Biol. Chem. 279: 53937 – 53946.
dc.identifier.citedreferenceZhang, P., B. McGrath, S. Li, et al. 2002. The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol. Cell. Biol. 22: 3864 – 3874.
dc.identifier.citedreferenceGupta, S., B. McGrath & D.R. Cavener. 2010. PERK (EIF2AK3) regulates proinsulin trafficking and quality control in the secretory pathway. Diabetes 59: 1937 – 1947.
dc.identifier.citedreferenceWang, R., B.C. McGrath, R.F. Kopp, et al. 2013. Insulin secretion and Ca 2+ dynamics in β‐cells are regulated by PERK (EIF2AK3) in concert with calcineurin. J. Biol. Chem. 288: 33824 – 33836.
dc.identifier.citedreferenceHarding, H.P., A.F. Zyryanova & D. Ron. 2012. Uncoupling proteostasis and development in vitro with a small molecule inhibitor of the pancreatic endoplasmic reticulum kinase, PERK. J. Biol. Chem. 287: 44338 – 44344.
dc.identifier.citedreferenceZhang, W., D. Feng, Y. Li, et al. 2006. PERK EIF2AK3 control of pancreatic beta cell differentiation and proliferation is required for postnatal glucose homeostasis. Cell Metab. 4: 491 – 497.
dc.identifier.citedreferenceShi, Y., S.I. Taylor, S.‐L. Tan, et al. 2003. When translation meets metabolism: multiple links to diabetes. Endocr. Rev. 24: 91 – 101.
dc.identifier.citedreferenceJulier, C. & M. Nicolino. 2010. Wolcott–Rallison syndrome. Orphanet J. Rare Dis. 5: 29.
dc.identifier.citedreferenceHarding, H.P., Y. Zhang, H. Zeng, et al. 2003. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11: 619 – 633.
dc.identifier.citedreferenceScheuner, D., D. Vander Mierde, B. Song, et al. 2005. Control of mRNA translation preserves reticulum function in beta cells and maintains glucose homeostasis. Nat. Med. 11: 757 – 764.
dc.identifier.citedreferenceScheuner, D., B. Song, E. McEwen, et al. 2001. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell 7: 1165 – 1176.
dc.identifier.citedreferenceBack, S.H., D. Scheuner, J. Han, et al. 2009. Translation attenuation through eIF2alpha phosphorylation prevents oxidative stress and maintains the differentiated state in beta cells. Cell Metab. 10: 13 – 26.
dc.identifier.citedreferenceAlarcon, C., B.B. Boland, Y. Uchizono, et al. 2015. Pancreatic β‐cell adaptive plasticity in obesity increases insulin production but adversely affects secretory function. Diabetes 65: 438 – 450.
dc.identifier.citedreferenceNolan, C.J. & V. Delghingaro‐Augusto. 2016. Reversibility of defects in proinsulin processing and islet beta‐cell failure in obesity‐related type 2 diabetes. Diabetes 65: 352 – 354.
dc.identifier.citedreferenceHan, J., S.H. Back, J. Hur, et al. 2013. ER‐stress‐induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol. 15: 481 – 490.
dc.identifier.citedreferenceKrokowski, D., J. Han, M. Saikia, et al. 2013. A self‐defeating anabolic program leads to β cell apoptosis in ER stress‐induced diabetes via regulation of amino acid flux. J. Biol. Chem. 288: 17202 – 17213.
dc.identifier.citedreferenceMarciniak, S.J., C.Y. Yun, S. Oyadomari, et al. 2004. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18: 3066 – 3077.
dc.identifier.citedreferenceHassler, J.R., D.L. Scheuner, S. Wang, et al. 2015. The IRE1α/XBP1s pathway is essential for the glucose response and protection of β cells. PLoS Biol. 13: e1002277.
dc.identifier.citedreferenceKaniuk, N.A., M. Kiraly, H. Bates, et al. 2007. Ubiquitinated‐protein aggregates form in pancreatic beta‐cells during diabetes‐induced oxidative stress and are regulated by autophagy. Diabetes 56: 930 – 939.
dc.identifier.citedreferenceDespa, F. 2009. Dilation of the endoplasmic reticulum in beta cells due to molecular overcrowding? Kinetic simulations of extension limits and consequences on proinsulin synthesis. Biophys. Chem. 140: 115 – 121.
dc.identifier.citedreferenceDespa, F. 2010. Endoplasmic reticulum overcrowding as a mechanism of β‐cell dysfunction in diabetes. Biophys. J. 98: 1641 – 1648.
dc.identifier.citedreferenceGardner, B.M., D. Pincus, K. Gotthardt, et al. 2013. Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb. Perspect. Biol. 5: a013169.
dc.identifier.citedreferenceZhu, Y.L., A. Abdo, J.F. Gesmonde, et al. 2004. Aggregation and lack of secretion of most newly synthesized proinsulin in non‐beta‐cell lines. Endocrinology 145: 3840 – 3849.
dc.identifier.citedreferenceWang, J., Y. Chen, Q. Yuan, et al. 2011. Control of precursor maturation and disposal is an early regulative mechanism in the normal insulin production of pancreatic β‐cells. PLoS One 6: e19446.
dc.identifier.citedreferenceDowling, P., L. O’Driscoll, F. O’Sullivan, et al. 2006. Proteomic screening of glucose‐responsive and glucose non‐responsive MIN‐6 beta cells reveals differential expression of proteins involved in protein folding, secretion and oxidative stress. Proteomics 6: 6578 – 6587.
dc.identifier.citedreferenceLee, J.S., Y. Wu, P. Schnepp, et al. 2015. Proteomics analysis of rough endoplasmic reticulum in pancreatic beta cells. Proteomics 15: 1508 – 1511.
dc.identifier.citedreferenceMargittai, E. & R. Sitia. 2011. Oxidative protein folding in the secretory pathway and redox signaling across compartments and cells. Traffic 12: 1 – 8.
dc.identifier.citedreferenceHudson, D.A., S.A. Gannon & C. Thorpe. 2015. Oxidative protein folding: from thiol‐disulfide exchange reactions to the redox poise of the endoplasmic reticulum. Free Radic. Biol. Med. 80: 171 – 182.
dc.identifier.citedreferenceMehmeti, I., S. Lortz, M. Elsner, et al. 2014. Peroxiredoxin 4 improves insulin biosynthesis and glucose‐induced insulin secretion in insulin‐secreting INS‐1E cells. J. Biol. Chem. 289: 26904 – 26913.
dc.identifier.citedreferenceFrand, A.R. & C.A. Kaiser. 1999. Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum. Mol. Cell 4: 469 – 477.
dc.identifier.citedreferenceKhoo, C., J. Yang, G. Rajpal, et al. 2011. Endoplasmic reticulum oxidoreductase‐1‐like‐β (ERO1l‐β) regulates susceptibility to endoplasmic reticulum stress and is induced by insulin flux in β‐cells. Endocrinology 152: 2599 – 2608.
dc.identifier.citedreferenceZito, E., K.T. Chin, J. Blais, et al. 2010. ERO1‐beta, a pancreas‐specific disulfide oxidase, promotes insulin biogenesis and glucose homeostasis. J. Cell Biol. 188: 821 – 832.
dc.identifier.citedreferenceWright, J., J. Birk, L. Haataja, et al. 2013. Endoplasmic reticulum oxidoreductin‐1α (Ero1α) improves folding and secretion of mutant proinsulin and limits mutant proinsulin‐induced endoplasmic reticulum stress. J. Biol. Chem. 288: 31010 – 31018.
dc.identifier.citedreferenceYoshioka, M., T. Kayo, T. Ikeda, et al. 1997. A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early‐onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes 46: 887 – 894.
dc.identifier.citedreferenceRajpal, G. & P. Arvan. 2013. Disulfide bond formation. In Handbook of Biologically Active Peptides. A. Kastin, Ed.: 1721 – 1729. San Diego: Elsevier/Academic Press.
dc.identifier.citedreferenceMontane, J., S. de Pablo, M. Obach, et al. 2016. Protein disulfide isomerase ameliorates beta‐cell dysfunction in pancreatic islets overexpressing human islet amyloid polypeptide. Mol. Cell. Endocrinol. 420: 57 – 65.
dc.identifier.citedreferenceRajpal, G., I. Schuiki, M. Liu, et al. 2012. Action of protein disulfide isomerase on proinsulin exit from endoplasmic reticulum of pancreatic β‐cells. J. Biol. Chem. 287: 43 – 47.
dc.identifier.citedreferenceZhang, L., E. Lai, T. Teodoro, et al. 2009. GRP78, but not protein‐disulfide isomerase, partially reverses hyperglycemia‐induced inhibition of insulin synthesis and secretion in pancreatic {beta}‐cells. J. Biol. Chem. 284: 5289 – 5298.
dc.identifier.citedreferenceOka, O.B., H.Y. Yeoh & N.J. Bulleid. 2015. Thiol–disulfide exchange between the PDI family of oxidoreductases negates the requirement for an oxidase or reductase for each enzyme. Biochem. J. 469: 279 – 288.
dc.identifier.citedreferenceSato, Y., R. Kojima, M. Okumura, et al. 2013. Synergistic cooperation of PDI family members in peroxiredoxin 4‐driven oxidative protein folding. Sci. Rep. 3: 2456.
dc.identifier.citedreferenceHe, K., C.N. Cunningham, N. Manickam, et al. 2015. PDI reductase acts on Akita mutant proinsulin to initiate retrotranslocation along the Hrd1/Sel1L–p97 axis. Mol. Biol. Cell 26: 3413 – 3423.
dc.identifier.citedreferenceCunningham, C.N., K. He, A. Arunagiri, et al. 2016. Chaperone‐driven degradation of a misfolded proinsulin mutant in parallel with restoration of wild type insulin secretion. Diabetes 66: 741 – 753.
dc.identifier.citedreferenceAlberti, A., P. Karamessinis, M. Peroulis, et al. 2009. ERp46 is reduced by high glucose and regulates insulin content in pancreatic beta‐cells. Am. J. Physiol. Endocrinol. Metab. 297: E812 – E821.
dc.identifier.citedreferenceLampropoulou, E., A. Lymperopoulou & A. Charonis. 2016. Reduced expression of ERp46 under diabetic conditions in beta‐cells and the effect of liraglutide. Metabolism 65: 7 – 15.
dc.identifier.citedreferenceEletto, D., D. Eletto, S. Boyle, et al. 2016. PDIA6 regulates insulin secretion by selectively inhibiting the RIDD activity of IRE1. FASEB J. 30: 653 – 665.
dc.identifier.citedreferenceGorasia, D.G., N.L. Dudek, H. Safavi‐Hemami, et al. 2016. A prominent role of PDIA6 in processing of misfolded proinsulin. Biochim. Biophys. Acta 1864: 715 – 723.
dc.identifier.citedreferenceGroenendyk, J., Z. Peng, E. Dudek, et al. 2014. Interplay between the oxidoreductase PDIA6 and microRNA‐322 controls the response to disrupted endoplasmic reticulum calcium homeostasis. Sci. Signal. 7: ra54.
dc.identifier.citedreferencePottekat, A., S. Becker, K.R. Spencer, et al. 2013. Insulin biosynthetic interaction network component, TMEM24, facilitates insulin reserve pool release. Cell Rep. 4: 921 – 930.
dc.identifier.citedreferenceFeng, D., J. Wei, S. Gupta, et al. 2009. Acute ablation of PERK results in ER dysfunctions followed by reduced insulin secretion and cell proliferation. BMC Cell Biol. 10: 61.
dc.identifier.citedreferenceSchmitz, A., M. Maintz, T. Kehle, et al. 1995. In vivo iodination of a misfolded proinsulin reveals co‐localized signals for BiP binding and for degradation in the ER. EMBO J. 14: 1091 – 1098.
dc.identifier.citedreferenceTeodoro‐Morrison, T., I. Schuiki, L. Zhang, et al. 2013. GRP78 overproduction in pancreatic beta cells protects against high‐fat‐diet‐induced diabetes in mice. Diabetologia 56: 1057 – 1067.
dc.identifier.citedreferenceFritz, J.M., M. Dong, K.S. Apsley, et al. 2014. Deficiency of the BiP cochaperone ERdj4 causes constitutive endoplasmic reticulum stress and metabolic defects. Mol. Biol. Cell 25: 431 – 440.
dc.identifier.citedreferenceIttner, A.A., J. Bertz, T.Y. Chan, et al. 2014. The nucleotide exchange factor SIL1 is required for glucose‐stimulated insulin secretion from mouse pancreatic beta cells in vivo. Diabetologia 57: 1410 – 1419.
dc.identifier.citedreferenceHan, J., B. Song, J. Kim, et al. 2015. Antioxidants complement the requirement for protein chaperone function to maintain β‐cell function and glucose homeostasis. Diabetes 64: 2892 – 2904.
dc.identifier.citedreferenceO’Neill, C.M., C. Lu, K.L. Corbin, et al. 2013. Circulating levels of IL‐1B+IL‐6 cause ER stress and dysfunction in islets from prediabetic male mice. Endocrinology 154: 3077 – 3088.
dc.identifier.citedreferenceAvezov, E., T. Konno, A. Zyryanova, et al. 2015. Retarded PDI diffusion and a reductive shift in poise of the calcium depleted endoplasmic reticulum. BMC Biol. 13: 2.
dc.identifier.citedreferenceChemaly, E.R., L. Troncone & D. Lebeche. 2017. SERCA control of cell death and survival. Cell Calcium. 69: 46 – 61.
dc.identifier.citedreferenceVaradi, A. & G.A. Rutter. 2002. Dynamic imaging of endoplasmic reticulum Ca 2+ concentration in insulin‐secreting MIN6 cells using recombinant targeted cameleons: roles of sarco(endo)plasmic reticulum Ca 2+ –ATPase (SERCA)‐2 and ryanodine receptors. Diabetes 51 ( Suppl. 1 ): S190 – S201.
dc.identifier.citedreferenceJohnson, J.S., T. Kono, X. Tong, et al. 2014. Pancreatic and duodenal homeobox protein 1 (Pdx‐1) maintains endoplasmic reticulum calcium levels through transcriptional regulation of sarco‐endoplasmic reticulum calcium ATPase 2b (SERCA2b) in the islet β cell. J. Biol. Chem. 289: 32798 – 32810.
dc.identifier.citedreferenceGuest, P.C., E.M. Bailyes & J.C. Hutton. 1997. Endoplasmic reticulum Ca 2+ is important for the proteolytic processing and intracellular transport of proinsulin in the pancreatic beta‐cell. Biochem. J. 323: 445 – 450.
dc.identifier.citedreferenceTong, X., T. Kono, E.K. Anderson‐Baucum, et al. 2016. SERCA2 deficiency impairs pancreatic β‐cell function in response to diet‐induced obesity. Diabetes 65: 3039 – 3052.
dc.identifier.citedreferenceTiwari, A., I. Schuiki, L. Zhang, et al. 2013. SDF2L1 interacts with the ER‐associated degradation machinery and retards the degradation of mutant proinsulin in pancreatic beta‐cells. J. Cell Sci. 126: 1962 – 1968.
dc.identifier.citedreferenceGoodchild, R.E. & W.T. Dauer. 2005. The AAA+ protein torsinA interacts with a conserved domain present in LAP1 and a novel ER protein. J. Cell Biol. 168: 855 – 862.
dc.identifier.citedreferenceXu, T., L. Yang, C. Yan, et al. 2014. The IRE1α–XBP1 pathway regulates metabolic stress‐induced compensatory proliferation of pancreatic β‐cells. Cell Res. 24: 1137 – 1140.
dc.identifier.citedreferenceTsuchiya, Y., M. Saito & K. Kohno. 2016. Pathogenic mechanism of diabetes development due to dysfunction of unfolded protein response. Yakugaku Zasshi 136: 817 – 825.
dc.identifier.citedreferenceLee, A.H., K. Heidtman, G.S. Hotamisligil, et al. 2011. Dual and opposing roles of the unfolded protein response regulated by IRE1alpha and XBP1 in proinsulin processing and insulin secretion. Proc. Natl. Acad. Sci. USA 108: 8885 – 8890.
dc.identifier.citedreferenceUsui, M., S. Yamaguchi, Y. Tanji, et al. 2012. Atf6α‐null mice are glucose intolerant due to pancreatic β‐cell failure on a high‐fat diet but partially resistant to diet‐induced insulin resistance. Metabolism 61: 1118 – 1128.
dc.identifier.citedreferenceWeiss, M.A., B.H. Frank, I. Khait, et al. 1990. NMR and photo‐CIDNP studies of human proinsulin and prohormone processing intermediates with application to endopeptidase recognition. Biochemistry 29: 8389 – 8401.
dc.identifier.citedreferenceWeiss, M.A. 2013. Diabetes mellitus due to the toxic misfolding of proinsulin variants. FEBS Lett. 587: 1942 – 1950.
dc.identifier.citedreferenceLiu, M., I. Hodish, L. Haataja, et al. 2010. Proinsulin misfolding and diabetes: mutant INS gene‐induced diabetes of youth. Trends Endocrinol. Metab. 21: 652 – 659.
dc.identifier.citedreferenceLiu, M., L. Haataja, J. Wright, et al. 2010. Mutant INS‐gene induced diabetes of youth: proinsulin cysteine residues impose dominant‐negative inhibition on wild‐type proinsulin transport. PLoS One 5: e13333.
dc.identifier.citedreferenceBack, S.H. & R.J. Kaufman. 2012. Endoplasmic reticulum stress and type 2 diabetes. Annu. Rev. Biochem. 81: 767 – 793.
dc.identifier.citedreferenceStoy, J., E.L. Edghill, S.E. Flanagan, et al. 2007. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc. Natl. Acad. Sci. USA 104: 15040 – 15044.
dc.identifier.citedreferenceColombo, C., O. Porzio, M. Liu, et al. 2008. Seven mutations in the human insulin gene linked to permanent neonatal/infancy‐onset diabetes mellitus. J. Clin. Invest. 118: 2148 – 2156.
dc.identifier.citedreferenceGarin, I., E.L. Edghill, I. Akerman, et al. 2010. Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis. Proc. Natl. Acad. Sci. USA 107: 3105 – 3110.
dc.identifier.citedreferenceZhu, S., D. Larkin, S. Lu, et al. 2016. Monitoring C‐peptide storage and secretion in islet β‐cells in vitro and in vivo. Diabetes 65: 699 – 709.
dc.identifier.citedreferenceRajan, S., S.C. Eames, S.Y. Park, et al. 2010. In vitro processing and secretion of mutant insulin proteins that cause permanent neonatal diabetes. Am. J. Physiol. Endocrinol. Metab. 298: E403 – E410.
dc.identifier.citedreferenceStoy, J., J. Olsen, S.Y. Park, et al. 2017. In vivo measurement and biological characterisation of the diabetes‐associated mutant insulin p.R46Q (GlnB22‐insulin). Diabetologia 60: 1423 – 1431.
dc.identifier.citedreferenceZuber, C., J.Y. Fan, B. Guhl, et al. 2004. Misfolded proinsulin accumulates in expanded pre‐Golgi intermediates and endoplasmic reticulum subdomains in pancreatic beta cells of Akita mice. FASEB J. 18: 917 – 919.
dc.identifier.citedreferenceIzumi, T., H. Yokota‐Hashimoto, S. Zhao, et al. 2003. Dominant negative pathogenesis by mutant proinsulin in the Akita diabetic mouse. Diabetes 52: 409 – 416.
dc.identifier.citedreferenceOyadomari, S., A. Koizumi, K. Takeda, et al. 2002. Targeted disruption of the CHOP gene delays endoplasmic reticulum stress‐mediated diabetes. J. Clin. Invest. 109: 525 – 532.
dc.identifier.citedreferenceYamane, S., Y. Hamamoto, S. Harashima, et al. 2011. GLP‐1 receptor agonist attenuates endoplasmic reticulum stress‐mediated β‐cell damage in Akita mice. J. Diabetes Investig. 2: 104 – 110.
dc.identifier.citedreferenceChen, H., C. Zheng, X. Zhang, et al. 2011. Apelin alleviates diabetes‐associated endoplasmic reticulum stress in the pancreas of Akita mice. Peptides 32: 1634 – 1639.
dc.identifier.citedreferenceShirakawa, J., Y. Togashi, E. Sakamoto, et al. 2013. Glucokinase activation ameliorates ER stress‐induced apoptosis in pancreatic β‐cells. Diabetes 62: 3448 – 3458.
dc.identifier.citedreferenceZhao, L., H. Guo, H. Chen, et al. 2013. Effect of Liraglutide on endoplasmic reticulum stress in diabetes. Biochem. Biophys. Res. Commun. 441: 133 – 138.
dc.identifier.citedreferenceDuan, H., J.W. Lee, S.W. Moon, et al. 2016. Discovery, synthesis, and evaluation of 2,4‐diaminoquinazolines as a novel class of pancreatic beta‐cell‐protective agents against endoplasmic reticulum (ER) stress. J. Med. Chem. 59: 7783 – 7800.
dc.identifier.citedreferenceTang, W., Q. Yuan, B. Xu, et al. 2017. Exenatide substantially improves proinsulin conversion and cell survival that augment Ins2+/Akita beta cell function. Mol. Cell. Endocrinol. 439: 297 – 307.
dc.identifier.citedreferenceNaito, M., J. Fujikura, K. Ebihara, et al. 2011. Therapeutic impact of leptin on diabetes, diabetic complications, and longevity in insulin‐deficient diabetic mice. Diabetes 60: 2265 – 2273.
dc.identifier.citedreferenceBarbetti, F., C. Colombo, L. Haataja, et al. 2016. Hyperglucagonemia in an animal model of insulin‐deficient diabetes: what therapy can improve it ? Clin. Diabetes Endocrinol. 2: 11.
dc.identifier.citedreferenceAbsood, A., B. Gandomani, A. Zaki, et al. 2013. Insulin therapy for pre‐hyperglycemic beta‐cell endoplasmic reticulum crowding. PLoS One 8: e54351.
dc.identifier.citedreferenceKautz, S., L. van Burck, M. Schuster, et al. 2012. Early insulin therapy prevents beta cell loss in a mouse model for permanent neonatal diabetes (Munich Ins2(C95S)). Diabetologia 55: 382 – 391.
dc.identifier.citedreferenceGong, H., Z. He, A. Peng, et al. 2014. Effects of several quinones on insulin aggregation. Sci. Rep. 4: 5648.
dc.identifier.citedreferenceEisele, Y.S., C. Monteiro, C. Fearns, et al. 2015. Targeting protein aggregation for the treatment of degenerative diseases. Nat. Rev. Drug Discov. 14: 759 – 780.
dc.identifier.citedreferencePreston, G.M. & J.L. Brodsky. 2017. The evolving role of ubiquitin modification in endoplasmic reticulum‐associated degradation. Biochem. J. 474: 445 – 469.
dc.identifier.citedreferenceSchoebel, S., W. Mi, A. Stein, et al. 2017. Cryo‐EM structure of the protein‐conducting ERAD channel Hrd1 in complex with Hrd3. Nature 548: 352 – 355.
dc.identifier.citedreferenceQi, L., B. Tsai & P. Arvan. 2017. New insights into the physiological role of endoplasmic reticulum‐associated degradation. Trends Cell Biol. 27: 430 – 440.
dc.identifier.citedreferenceTravers, K.J., C.K. Patil, L. Wodicka, et al. 2000. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER‐associated degradation. Cell 101: 249 – 258.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.