Show simple item record

Introduction to the Synthesis and Purification of Oligonucleotides

dc.contributor.authorEllington, Andrew
dc.contributor.authorPollard, Jack D.
dc.date.accessioned2018-05-15T20:15:26Z
dc.date.available2018-05-15T20:15:26Z
dc.date.issued2000-02
dc.identifier.citationEllington, Andrew; Pollard, Jack D. (2000). "Introduction to the Synthesis and Purification of Oligonucleotides." Current Protocols in Nucleic Acid Chemistry 00(1): A.3C.1-A.3C.22.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/143751
dc.description.abstractModern nucleic acid synthesizers utilize phosphite triester chemistries that employ stable phosphoramidite monomers to build a growing polymer. These robust reactions allow easy generation of specific oligodeoxyribo‐ and oligoribonucleotides with a variety of labels, modified linkages, and nonstandard bases. Strategies are given for the maximization of synthetic yield, the generation of sequences containing site‐specific modifications, and the isolation of synthetic oligonucleotides. Protocols describe monitoring the progress of synthesis via the trityl assay and methods for deprotection.
dc.publisherApplied Biosystems
dc.publisherWiley Periodicals, Inc.
dc.titleIntroduction to the Synthesis and Purification of Oligonucleotides
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143751/1/cpnca03c.pdf
dc.identifier.doi10.1002/0471142700.nca03cs00
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceSzostak, J. 1992. In vitro genetics. Trends Biochem. Sci. 17: 89 ‐ 93.
dc.identifier.citedreferenceOliphant, R., Nussbaum, A.L., and Struhl, K. 1986. Cloning of random‐sequence oligodeoxynucleotides. Gene 44: 177 ‐ 183.
dc.identifier.citedreferencePharmacia. 1989. Analects Vol. 17, no. 2. Pharmacia Biotech, Piscataway, NJ.
dc.identifier.citedreferenceRatliff, R.L. 1982. Terminal deoxynucleotidyltransferase. In The Enzymes, Vol. XV ( P.D. Boyer, ed.) pp. 105 ‐ 118. Academic Press, San Diego.
dc.identifier.citedreferenceReddy, M.P., Hanna, N.B., and Farooqui, F. 1994. Fast cleavage and deprotection of oligonucleotides. Tetrahedron Lett. 35: 4311 ‐ 4314.
dc.identifier.citedreferenceReddy, M.P., Farooqui, F., Hanna, N.B. 1995. Methylamine deprotection provides increased yield of oligoribonucleotides. Tetrahedron Lett. 36: 8929 ‐ 8932.
dc.identifier.citedreferenceReidhaar‐Olson, J.F. and Sauer, R.T. 1988. Combinatorial cassette mutagenesis as a probe of the informational content of protein sequences. Science 241: 53 ‐ 57.
dc.identifier.citedreferenceSchulhof, J.C., Molko, D., and Teoule, R. 1987. The final deprotection step in oligonucleotide synthesis is reduced to a mild and rapid ammonia treatment by using labile base‐protecting groups. Nucl. Acids Res. 15: 397.
dc.identifier.citedreferenceSong, Q. and Jones, R.A. 1999. Use of silyl‐ethers as fluoride scavengers in RNA synthesis. Tetrahedron Lett. 40: 4653 ‐ 4654.
dc.identifier.citedreferenceSproat, B., Colonna, F., Mullah, B., Tsou, D., Andrus, A., Hampel, A., and Vinayak, R. 1995. An efficient method for the isolation and purification of oligoribonucleotides. Nucleosides Nucleotides 14: 255 ‐ 273.
dc.identifier.citedreferenceTanaka, T. and Letsinger, R.L. 1982. Syringe method for stepwise chemical synthesis of oligonucleotides. Nucl. Acids Res. 10: 3249.
dc.identifier.citedreferenceUhlenbeck, O.C. and Gumport, R.I. 1982. T4 RNA ligase. In The Enzymes, Vol. XV ( P.D. Boyer, ed.) pp. 31 ‐ 58. Academic Press, San Diego.
dc.identifier.citedreferenceUsman, N., Ogilvie, K.K., Jiang, M.Y., and Cederagren, R.J. 1987. Automated chemical synthesis of long oligoribonucleotides using 2′‐ O ‐silylated ribonucleotide 3′‐ O ‐phosphoramidites on a controlled‐pore glass support: Synthesis of a 43‐nucleotide sequence similar to the 3′ half molecule of an E. coli formylmethionine tRNA. J. Am. Chem. Soc. 109: 7845 ‐ 7854.
dc.identifier.citedreferenceVargeese, C., Carter, J., Yegge, J., Karivjansky, S., Settle, A., Kropp, E., Peterson, K., and Peiken, W. 1998. Efficient activation of nucleoside phosphoramidites with 4,5‐dicyanoimidazole during oligonucleotide synthesis. Nucl. Acids Res. 26: 1046 ‐ 1050.
dc.identifier.citedreferenceWarren, W.J. and Vella, G. 1994. Analysis and purification of synthetic oligonucleotides by high‐performance liquid chromatography. Methods Mol. Biol. 233 ‐ 264.
dc.identifier.citedreferenceWincott, F., DiRenzo, A., Shaffer, C., Grimm, S., Tracz, D., Workman, C., Sweedler, D., Gonzalez, C., Scaringe, S., and Usman, N. 1995. Synthesis, deprotection, analysis and purification of RNA and ribozymes. Nucl. Acids Res. 23: 2677 ‐ 2684.
dc.identifier.citedreferenceZhu, Y., He, L., Srinivasan, R., and Lubman, D. 1997. Improved resolution in the detection of oligonucleotides up to 60‐mers in matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry using pulsed‐delayed extraction with a simple high voltage transistor switch. Rapid Commun. Mass Spectrom. 11: 987 ‐ 992.
dc.identifier.citedreferenceZon, G., Gallo, K.A., Samson, C.J., Shao, K., Summers, M.F., and Byrd, R.A. 1985. Analytical studies of “mixed sequence” oligodeoxyribonucleotides synthesized by competitive coupling of either methyl or β‐cyanoethyl‐ N, N ‐diisopropylamino phosphoramidite reagents, including 2′‐deoxyinosine. Nucl. Acids Res. 13: 8181 ‐ 8196.
dc.identifier.citedreferenceApplied Biosystems, 1988. See above.
dc.identifier.citedreferenceBretherick, L. 1986. Hazards in the Chemical Laboratory, 4th ed. Alden Press, Oxford.
dc.identifier.citedreferenceGait, 1984. See above.
dc.identifier.citedreferencehttp://www.interactiva.de
dc.identifier.citedreferenceApplied Biosystems. 1988. User Bulletin no. 13. Applied Biosystems, Foster City, Calif.
dc.identifier.citedreferenceBartel, D. and Szostak, J.W. 1993. Isolation of new ribozymes from a pool of random sequences. Science 261: 1411 ‐ 1418.
dc.identifier.citedreferenceBoal, J.H., Wilk, A., Harindranath, N., Max, E.E., Kempe, T., and Beaucage, S.L. 1996. Cleavage of oligodeoxyribonucleotides from controlled‐pore glass supports and their rapid deprotection by gaseous amines. Nucl. Acids Res. 24: 3115 ‐ 3117.
dc.identifier.citedreferenceCiccarelli, R.B., Gunyuzlu, P., Huang, J., Scott, C., and Oakes, F.T. 1991. Construction of synthetic genes using PCR after automated DNA synthesis of their entire top and bottom strands. Nucl. Acids Res. 19: 6007 ‐ 6013.
dc.identifier.citedreferenceCohen, G., Deutsch, J., Fineberg, J., and Levine, A. 1997. Covalent attachment of DNA oligonucleotides to glass. Nucl. Acids Res. 25: 911 ‐ 912.
dc.identifier.citedreferenceDerbyshire, K.M., Salvo, J.J., and Grindley, N. 1986. A simple and efficient procedure for saturation mutagenesis using mixed oligodeoxynucleotides. Gene 46: 145 ‐ 152.
dc.identifier.citedreferenceEadie, J.S., McBride, L.J., Efcavitch, J.W., Hoff, L.B., and Cathcart, R. 1987. High‐performance liquid chromatographic analysis of oligodeoxyribonucleotide base composition. Anal. Biochem. 165: 442 ‐ 447.
dc.identifier.citedreferenceFarrance, I.K., Eadie, J.S., and Ivarie, R. 1989. Improved chemistry for oligodeoxyribonucleotide synthesis substantially improves restriction enzyme cleavage of a synthetic 35mer. Nucl. Acids Res. 17: 1231 ‐ 1245.
dc.identifier.citedreferenceGait, M.J. (ed.). 1984. Oligonucleotide Synthesis: A Practical Approach. IRL Press, Washington, D.C.
dc.identifier.citedreferenceGillam, S. and Smith, M. 1980. Use of E. coli polynucleotide phosphorylase for the synthesis of oligodeoxyribonucleotides of defined sequence. Methods Enzymol. 65: 687 ‐ 701.
dc.identifier.citedreferenceHermes, J.D., Parekh, S.M., Blacklow, S.C., Kuster, H., and Knowles, J.R. 1989. A reliable method for random mutagenesis: The generation of mutant libraries using spiked deoxyribonucleotide primers. Gene 184: 143 ‐ 151.
dc.identifier.citedreferenceHorn, T. and Urdea, M.S. 1988. Solid supported hydrolysis of apurinic sites in synthetic oligonucleotides for rapid and efficient purification on reverse‐phase cartridges. Nucl. Acids Res. 16: 11559 ‐ 11571.
dc.identifier.citedreferenceKawahara, S., Wada, T., and Sekine, M. 1996. Unprecedented mild acid‐catalyzed desilyation of the 2‐ O ‐ tert ‐butyldimethylsilyl group from chemically synthesized oligoribonucleotides intermediates via neighboring group participation of the internucleotide phosphate residue. J. Am. Chem. Soc. 118: 9461 ‐ 9468.
dc.identifier.citedreferenceKinoshita, Y., Nishigaki, K., and Husimi, Y. 1997. Fluorescence‐, isotope‐ or biotin‐labeling of the 5′‐end of single‐stranded DNA/RNA using T4 RNA ligase. Nucl. Acids Res. 25: 3747 ‐ 3748.
dc.identifier.citedreferenceOliphant, R. 1989. Functional Sequences from Random DNA. Harvard University Thesis, Boston, Mass.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.