Show simple item record

Deep cerebral vein expansion with metabolic and neurocognitive recovery in Sturgeâ Weber syndrome

dc.contributor.authorJohn, Flóra
dc.contributor.authorMaqbool, Mohsin
dc.contributor.authorJeong, Jeong‐won
dc.contributor.authorAgarwal, Rajkumar
dc.contributor.authorBehen, Michael E.
dc.contributor.authorJuhász, Csaba
dc.date.accessioned2018-05-15T20:15:45Z
dc.date.available2019-06-03T15:24:19Zen
dc.date.issued2018-04
dc.identifier.citationJohn, Flóra ; Maqbool, Mohsin; Jeong, Jeong‐won ; Agarwal, Rajkumar; Behen, Michael E.; Juhász, Csaba (2018). "Deep cerebral vein expansion with metabolic and neurocognitive recovery in Sturgeâ Weber syndrome." Annals of Clinical and Translational Neurology 5(4): 502-506.
dc.identifier.issn2328-9503
dc.identifier.issn2328-9503
dc.identifier.urihttps://hdl.handle.net/2027.42/143768
dc.description.abstractWe present longitudinal imaging data of a child with Sturgeâ Weber syndrome (SWS). At age 8 months, 3 weeks after initial seizures and prolonged motor deficit, MRI showed extensive right hemispheric SWS involvement with severe glucose hypometabolism on PET. She was treated with levetiracetam and aspirin. Followâ up imaging at age 29 months showed a robust interval expansion of enlarged deep medullary veins throughout the affected hemisphere along with a dramatic recovery of hemispheric metabolism and normalized neurocognitive functioning. These findings demonstrate a robust, multilobar hemispheric remodeling of deep venous collaterals that likely contributed to reversal of initial metabolic and neurocognitive deficits.
dc.publisherThe Sturgeâ Weber Foundation
dc.publisherWiley Periodicals, Inc.
dc.titleDeep cerebral vein expansion with metabolic and neurocognitive recovery in Sturgeâ Weber syndrome
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurology and Neurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143768/1/acn3546_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143768/2/acn3546.pdf
dc.identifier.doi10.1002/acn3.546
dc.identifier.sourceAnnals of Clinical and Translational Neurology
dc.identifier.citedreferenceBodensteiner JB, Roach ES. Overview of Sturgeâ Weber syndrome. In: Bodensteiner JB, Roach ES, eds. Sturgeâ Weber syndrome. Mt Freedom, NJ: The Sturgeâ Weber Foundation, 2010: 19 â 32.
dc.identifier.citedreferenceShirley MD, Tang H, Gallione CJ, et al. Sturgeâ Weber syndrome and portâ wine stains caused by somatic mutation in GNAQ. N Engl J Med 2013; 23: 1971 â 1979.
dc.identifier.citedreferenceLo W, Marchuk DA, Ball KL, et al. Updates and future horizons on the understanding, diagnosis, and treatment of Sturgeâ Weber syndrome brain involvement. Dev Med Child Neurol 2012; 54: 214 â 223.
dc.identifier.citedreferenceLee JS, Asano E, Muzik O, et al. Sturgeâ Weber syndrome: correlation between clinical course and FDG PET findings. Neurology 2001; 24: 189 â 195.
dc.identifier.citedreferenceBehen ME, Juhász C, Wolfeâ Christensen C, et al. Brain damage and IQ in unilateral Sturgeâ Weber syndrome: support for a â fresh startâ hypothesis. Epilepsy Behav 2011; 22: 352 â 357.
dc.identifier.citedreferenceBosnyák E, Behen ME, Guy WC, et al. Predictors of cognitive functions in children with Sturgeâ Weber syndrome: a longitudinal study. Pediatr Neurol 2016; 61: 38 â 45.
dc.identifier.citedreferenceTong KA, Ashwal S, Obenaus A, et al. Susceptibilityâ weighted MR imaging: a review of clinical applications in children. AJNR Am J Neuroradiol 2008; 29: 9 â 17.
dc.identifier.citedreferencePilli VK, Chugani HT, Juhász C. Enlargement of deep medullary veins during the early clinical course of Sturgeâ Weber syndrome. Neurology 2017; 3: 103 â 105.
dc.identifier.citedreferenceYe Y, Hu J, Wu D, Haacke EM. Noncontrastâ enhanced magnetic resonance angiography and venography imaging with enhanced angiography. J Magn Reson Imaging 2013; 38: 1539 â 1548.
dc.identifier.citedreferenceKramer U, Kahana E, Shorer Z, Benâ Zeev B. Outcome of infants with unilateral Sturgeâ Weber syndrome and early onset seizures. Dev Med Child Neurol 2000; 42: 756 â 759.
dc.identifier.citedreferenceZabel TA, Reesman J, Wodka EL, et al. Neuropsychological features and risk factors in children with Sturgeâ Weber syndrome: four case reports. Clin Neuropsychol 2010; 24: 841 â 859.
dc.identifier.citedreferenceBatista CE, Juhasz C, Muzik O, et al. Increased visual cortex glucose metabolism contralateral to angioma in children with Sturgeâ Weber syndrome. Dev Med Child Neurol 2007; 49: 567 â 573.
dc.identifier.citedreferenceJeong JW, Tiwari VN, Shin J, et al. Assessment of brain damage and plasticity in the visual system due to early occipital lesion: comparison of FDGâ PET with diffusion MRI tractography. J Magn Reson Imaging 2015; 41: 431 â 438.
dc.identifier.citedreferenceKim JA, Jeong JW, Behen ME, et al. Metabolic correlates of cognitive function in children with unilateral Sturgeâ Weber syndrome: evidence for regional functional reorganization and crowding. Hum Brain Mapp 2017; https://doi.org/10.1002/hbm.23937.
dc.identifier.citedreferenceKamson DO, Juhász C, Shin J, et al. Patterns of structural reorganization of the corticospinal tract in children with Sturgeâ Weber syndrome. Pediatr Neurol 2014; 50: 337 â 342.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.