Show simple item record

Survey of Magnetosheath Plasma Properties at Saturn and Inference of Upstream Flow Conditions

dc.contributor.authorThomsen, M. F.
dc.contributor.authorCoates, A. J.
dc.contributor.authorJackman, C. M.
dc.contributor.authorSergis, N.
dc.contributor.authorJia, X.
dc.contributor.authorHansen, K. C.
dc.date.accessioned2018-05-15T20:15:51Z
dc.date.available2019-05-13T14:45:28Zen
dc.date.issued2018-03
dc.identifier.citationThomsen, M. F.; Coates, A. J.; Jackman, C. M.; Sergis, N.; Jia, X.; Hansen, K. C. (2018). "Survey of Magnetosheath Plasma Properties at Saturn and Inference of Upstream Flow Conditions." Journal of Geophysical Research: Space Physics 123(3): 2034-2053.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/143774
dc.description.abstractA new Cassini magnetosheath data set is introduced that is based on a comprehensive survey of intervals in which the observed magnetosheath flow was encompassed within the plasma analyzer field of view and for which the computed numerical moments are therefore expected to be accurate. The data extend from 2004 day 299 to 2012 day 151 and comprise 19,155 416 s measurements. In addition to the plasma ion moments (density, temperature, and flow velocity), merged values of the plasma electron density and temperature, the energetic particle pressure, and the magnetic field vector are included in the data set. Statistical properties of various magnetosheath parameters, including dependence on local time, are presented. The magnetosheath field and flow are found to be only weakly aligned, primarily because of a relatively large z component of the magnetic field, attributable to the field being pulled out of the equatorial orientation by flows at higher latitudes. A new procedure for using magnetosheath properties to estimate the upstream solar wind speed is proposed and used to determine that the amount of electron heating at Saturn’s high Mach‐number bow shock is ~4% of the dissipated flow energy. The data set is available as supporting information to this paper.Key PointsA new set of Cassini plasma, energetic particle, and magnetic field data from Saturn’s magnetosheath is introducedStatistical behavior of various magnetosheath properties is examined and compared with predicted upstream solar wind propertiesScience applications to electron heating at the bow shock and to magnetosheath structure are presented
dc.publisherWiley Periodicals, Inc.
dc.publisherAmerican Geophysical Union
dc.subject.otherSaturn
dc.subject.othermagnetosheath
dc.subject.otherbow shock
dc.titleSurvey of Magnetosheath Plasma Properties at Saturn and Inference of Upstream Flow Conditions
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143774/1/jgra54136.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143774/2/jgra54136_am.pdf
dc.identifier.doi10.1002/2018JA025214
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSergis, N., Jackman, C. M., Thomsen, M. F., Krimigis, S. M., Mitchell, D. G., Hamilton, D. C., et al. ( 2017 ). Radial and local time structure of the Saturnian ring current, revealed by Cassini. Journal of Geophysical Research: Space Physics, 122, 1803 – 1815. https://doi.org/10.1002/2016JA023742
dc.identifier.citedreferenceMasters, A., Schwartz, S. J., Henley, E. M., Thomsen, M. F., Zieger, B., Coates, A. J., et al. ( 2011 ). Electron heating at Saturn’s bow shock. Journal of Geophysical Research, 116, A10107. https://doi.org/10.1029/2011JA016941
dc.identifier.citedreferenceMasters, A., Sulaiman, A. H., Sergis, N., Stawarz, L., Fujimoto, M., Coates, A. J., & Dougherty, M. K. ( 2016 ). Suprathermal electrons at Saturn’s bow shock. Astrophysical Journal, 826 ( 1 ), 48. https://doi.org/10.3847/0004‐637X/826/1/48
dc.identifier.citedreferencePhan, T.‐D., Paschmann, G., Baumjohann, W., & Sckopke, N. ( 1994 ). The magnetosheath region adjacent to the dayside magnetopause: AMPTE/IRM observations. Journal of Geophysical Research, 99, 121 – 141. https://doi.org/10.1029/93JA02444
dc.identifier.citedreferencePilkington, N. M., Achilleos, N., Arridge, C. S., Guio, P., Masters, A., Ray, L. C., et al. ( 2015 ). Asymmetries observed in Saturn’s magnetopause geometry. Geophysical Research Letters, 42, 6890 – 6898. https://doi.org/10.1002/2015GL065477
dc.identifier.citedreferencePilkington, N. M., Achilleos, N., Arridge, C. S., Masters, A., Sergis, N., Coates, A. J., & Dougherty, M. K. ( 2014 ). Polar confinement of Saturn’s magnetosphere revealed by in situ Cassini observations,. Journal of Geophysical Research: Space Physics, 119, 2858 – 2875. https://doi.org/10.1002/2014JA019774
dc.identifier.citedreferenceRichardson, J. D. ( 1987 ). Ion distribution functions in the dayside magnetosheaths of Jupiter and Saturn. Journal of Geophysical Research, 92, 6133 – 6140. https://doi.org/10.1029/JA092iA06p06133
dc.identifier.citedreferenceRichardson, J. D. ( 2002 ). The magnetosheaths of the outer planets. Planetary and Space Science, 50 ( 5‐6 ), 503 – 517. https://doi.org/10.1016/S0032‐0633(02)00029‐6
dc.identifier.citedreferenceSchwartz, S. J., Thomsen, M. F., Bame, S. J., & Stansberry, J. ( 1988 ). Electron heating and the potential jump across fast mode shocks. Journal of Geophysical Research, 93, 12,923 – 12,931. https://doi.org/10.1029/JA093iA11p12923
dc.identifier.citedreferenceSergis, N., Jackman, C. M., Masters, A., Krimigis, S. M., Thomsen, M. F., Hamilton, D. C., et al. ( 2013 ). Particle and magnetic field properties of the Saturnian magnetosheath: Presence and upstream escape of hot magnetospheric plasma. Journal of Geophysical Research, 118, 1620 – 1634. https://doi.org/10.1002/jgra.50164
dc.identifier.citedreferenceSergis, N., Krimigis, S. M., Mitchell, D. G., Hamilton, D. C., Krupp, N., Mauk, B. H., et al. ( 2009 ). Energetic particle pressure in Saturn’s magnetosphere measured with the Magnetospheric Imaging Instrument on Cassini. Journal of Geophysical Research, 114, A02214. https://doi.org/10.1029/2008JA013774
dc.identifier.citedreferenceSiscoe, G. L., Crooker, N. U., & Belcher, J. W. ( 1980 ). Sunward flow in Jupiter’s magnetosheath. Geophysical Research Letters, 7, 25 – 28. https://doi.org/10.1029/GL007i001p00025
dc.identifier.citedreferenceSlavin, J. A., Smith, E. J., Spreiter, J. R., & Stahara, S. S. ( 1985 ). Solar wind flow about the outer planets: Gas dynamic modeling of the Jupiter and Saturn bow shocks. Journal of Geophysical Research, 90, 6275 – 6286. https://doi.org/10.1029/JA090iA07p06275
dc.identifier.citedreferenceSong, P., Russell, C. T., Zhang, X. X., Stahara, S. S., Spreiter, J. R., & Gombosi, T. I. ( 1999 ). On the processes in the terrestrial magnetosheath 2. Case study. Journal of Geophysical Research, 104, 22,357 – 22,373. https://doi.org/10.1029/1999JA900246
dc.identifier.citedreferenceStahara, S. S., Spreiter, J. R., Rachiele, R., & Slavin, J. A. ( 1989 ). A three‐dimensional gasdynamic model for solar wind flow past nonaxisymmetric magnetospheres: Application to Jupiter and Saturn. Journal of Geophysical Research, 94, 13,353 – 13,365. https://doi.org/10.1029/JA094iA10p13353
dc.identifier.citedreferenceSulaiman, A. H., Jia, X., Achilleos, N., Sergis, N., Gurnett, D. A., & Kurth, W. S. ( 2017 ). Large‐scale solar wind flow around Saturn’s nonaxisymmetric magnetosphere. Journal of Geophysical Research: Space Physics, 122, 9198 – 9206. https://doi.org/10.1002/2017JA024595
dc.identifier.citedreferenceSulaiman, A. H., Masters, A., & Dougherty, M. K. ( 2016 ). Characterization of Saturn’s bow shock: Magnetic field observations of quasi‐perpendicular shocks. Journal of Geophysical Research, 121, 4425 – 4434. https://doi.org/10.1002/2016JA022449
dc.identifier.citedreferenceSulaiman, A. H., Masters, A., Dougherty, M. K., Burgess, D., Fujimoto, M., & Hospodarsky, G. B. ( 2015 ). Quasiperpendicular high Mach number shocks. Physical Review Letters, 115 ( 12 ), 125001. https://doi.org/10.1103/PhysRevLett.115.125001
dc.identifier.citedreferenceSulaiman, A. H., Masters, A., Dougherty, M. K., & Jia, X. ( 2014 ). The magnetic structure of Saturn’s magnetosheath. Journal of Geophysical Research, 119, 5651 – 5661. https://doi.org/10.1002/2014JA020019
dc.identifier.citedreferenceThomsen, M. F., Mellott, M. M., Stansberry, J. A., Bame, S. J., Gosling, J. T., & Russell, C. T. ( 1987 ). Strong electron heating at the Earth’s bow shock. Journal of Geophysical Research, 92, 10,119 – 10,124. https://doi.org/10.1029/JA092iA09p10119
dc.identifier.citedreferenceThomsen, M. F., Reisenfeld, D. B., Delapp, D. M., Tokar, R. L., Young, D. T., Crary, F. J., et al. ( 2010 ). Survey of ion plasma parameters in Saturn’s magnetosphere. Journal of Geophysical Research, 115, A10220. https://doi.org/10.1029/2010JA015267
dc.identifier.citedreferenceWent, D. R., Hospodarsky, G. B., Masters, A., Hansen, K. C., & Dougherty, M. K. ( 2011 ). A new semiempirical model of Saturn’s bow shock based on propagated solar wind parameters. Journal of Geophysical Research, 116, A07202. https://doi.org/10.1029/2010JA016349
dc.identifier.citedreferenceYoung, D. T., Berthelier, J. J., Blanc, M., Burch, J. L., Coates, A. J., Goldstein, R., et al. ( 2004 ). Cassini plasma spectrometer investigation. Space Science Reviews, 114 ( 1‐4 ), 1 – 112. https://doi.org/10.1007/s11214‐004‐1406‐4
dc.identifier.citedreferenceZieger, B., & Hansen, K. C. ( 2008 ). Statistical validation of a solar wind propagation model from 1 to 10 AU. Journal of Geophysical Research, 113, A08107. https://doi.org/10.1029/2008JA013046
dc.identifier.citedreferenceAchilleos, N., Arridge, C. S., Bertucci, C., Jackman, C. M., Dougherty, M. K., Khurana, K. K., & Russell, C. T. ( 2008 ). Large‐scale dynamics of Saturn’s magnetopause: Observations by Cassini. Journal of Geophysical Research, 113, A11209. https://doi.org/10.1029/2008JA013265
dc.identifier.citedreferenceArridge, C. S., Achilleos, N., Dougherty, M. K., Khurana, K. K., & Russell, C. T. ( 2006 ). Modeling the size and shape of Saturn’s magnetopause with variable dynamic pressure. Journal of Geophysical Research, 111, A11227. https://doi.org/10.1029/2005JA011574
dc.identifier.citedreferenceBurkholder, B., Delamere, P. A., Ma, X., Thomsen, M. F., Wilson, R. J., & Bagenal, F. ( 2017 ). Local time asymmetry of Saturn’s magnetosheath flows. Geophysical Research Letters, 44, 5877 – 5883. https://doi.org/10.1002/2017GL073031
dc.identifier.citedreferenceDelamere, P. A., Wilson, R. J., Eriksson, S., & Bagenal, F. ( 2013 ). Magnetic signatures of Kelvin‐Helmholtz vortices on Saturn’s magnetopause: Global survey. Journal of Geophysical Research: Space Physics, 118, 393 – 404. https://doi.org/10.1029/2012JA018197
dc.identifier.citedreferenceDelamere, P. A., Wilson, R. J., & Masters, A. ( 2011 ). Kelvin‐Helmholtz instability at Saturn’s magnetopause: Hybrid simulations. Journal of Geophysical Research, 116, A10222. https://doi.org/10.1029/2011JA016724
dc.identifier.citedreferenceDesroche, M., Bagenal, F., Delamere, P. A., & Erkaev, N. ( 2013 ). Conditions at the magnetopause of Saturn and implications for the solar wind interaction. Journal of Geophysical Research: Space Physics, 118, 3087 – 3095. https://doi.org/10.1002/jgra.50294
dc.identifier.citedreferenceDougherty, M. K., Kellock, S., Southwood, D. J., Balogh, A., Smith, E. J., Tsurutani, B. T., et al. ( 2004 ). The Cassini magnetic field investigation. Space Science Reviews, 114 ( 1‐4 ), 331 – 383. https://doi.org/10.1007/s11214‐004‐1432‐2
dc.identifier.citedreferenceErkaev, N. V., Farrugia, C. J., & Biernat, H. K. ( 1996 ). Effects on the Jovian magnetosheath arising from solar wind flow around nonaxisymmetric bodies. Journal of Geophysical Research, 101, 10,665 – 10,672. https://doi.org/10.1029/95JA03518
dc.identifier.citedreferenceFarrugia, C. J., Biernat, H. K., & Erkaev, N. V. ( 1998 ). The effect of the magnetopause shapes of Jupiter and Saturn on magnetosheath parameters. Planetary and Space Science, 46 ( 5 ), 507 – 514. https://doi.org/10.1016/S0032‐0633(97)00225‐0
dc.identifier.citedreferenceFuselier, S. A., Frahm, R., Lewis, W. S., Masters, A., Mukherjee, J., Petrinec, S. M., & Sillanpaa, I. J. ( 2014 ). The location of magnetic reconnection at Saturn’s magnetopause: A comparison with Earth. Journal of Geophysical Research: Space Physics, 119, 2563 – 2578. https://doi.org/10.1002/2013JA019684
dc.identifier.citedreferenceGurnett, D. A., Kurth, W. S., Kirchner, D. L., Hospodarsky, G. B., Averkamp, T. F., Zarka, P., et al. ( 2004 ). The Cassini Radio and Plasma Wave Science Investigation. Space Science Reviews, 114 ( 1‐4 ), 395 – 463. https://doi.org/10.1007/s11214‐004‐1434‐0
dc.identifier.citedreferenceHadid, L. Z., Sahraoui, F., Kiyani, K. H., Retinò, A., Modolo, R., Canu, P., et al. ( 2015 ). Nature of the MHD and kinetic scale turbulence in the magnetosheath of Saturn. Astrophysical Journal Letters, 813 ( 2 ), L29. https://doi.org/10.1088/2041‐8205/813/2/L29
dc.identifier.citedreferenceHansen, K. C., Ridley, A. J., Hospodarsky, G. B., Achilleos, N., Dougherty, M. K., Gombosi, T. I., & Tóth, G. ( 2005 ). Global MHD simulations of Saturn’s magnetosphere at the time of Cassini approach. Geophysical Research Letters, 32, L20S06. https://doi.org/10.1029/2005GL022835
dc.identifier.citedreferenceJackman, C. M., & Arridge, C. S. ( 2011 ). Solar cycle effects on the dynamics of Jupiter’s and Saturn’s magnetospheres. Solar Physics, 274 ( 1‐2 ), 481 – 502. https://doi.org/10.1007/s11207‐011‐9748‐z
dc.identifier.citedreferenceJackman, C. M., Forsyth, R. J., & Dougherty, M. K. ( 2008 ). The overall configuration of the interplanetary magnetic field upstream of Saturn as revealed by Cassini observations. Journal of Geophysical Research, 113, A08114. https://doi.org/10.1029/2008JA013083
dc.identifier.citedreferenceJia, X., Hansen, K. C., Gombosi, T. I., Kivelson, M. G., Tóth, G., DeZeeuw, D. L., & Ridley, A. J. ( 2012 ). Magnetospheric configuration and dynamics of Saturn’s magnetosphere: A global MHD simulation. Journal of Geophysical Research, 117, A05225. https://doi.org/10.1029/2012JA017575
dc.identifier.citedreferenceKanani, S. J., Arridge, C. S., Jones, G. H., Fazakerley, A. N., McAndrews, H. J., Sergis, N., et al. ( 2010 ). A new form of Saturn’s magnetopause using a dynamic pressure balance model, based on in situ, multi‐instrument Cassini measurements. Journal of Geophysical Research, 115, A06207. https://doi.org/10.1029/2009JA014262
dc.identifier.citedreferenceKivelson, M. G., & Jia, X. ( 2014 ). Control of periodic variations in Saturn’s agnetosphere by compressional waves. Journal of Geophysical Research: Space Physics, 119, 8030 – 8045. https://doi.org/10.1002/2014JA020258
dc.identifier.citedreferenceKrimigis, S. M., Mitchell, D. G., Hamilton, D. C., Livi, S., Dandouras, J., Jaskulek, S., et al. ( 2004 ). Magnetosphere Imaging Instrument (MIMI) on the Cassini Mission to Saturn/Titan. Space Science Reviews, 114 ( 1‐4 ), 233 – 329. https://doi.org/10.1007/s11214‐004‐1410‐8
dc.identifier.citedreferenceLavraud, B., Borovsky, J. E., Génot, V., Schwartz, S. J., Birn, J., Fazakerley, A. N., et al. ( 2009 ). Tracing solar wind plasma entry into the magnetosphere using ion‐to‐electron temperature ratio. Geophysical Research Letters, 36, L18109. https://doi.org/10.1029/2009GL039442
dc.identifier.citedreferenceLewis, G. R., André, N., Arridge, C. S., Coates, A. J., Gilbert, L. K., Linder, D. R., & Rymer, A. M. ( 2008 ). Derivation of density and temperature from the Cassini‐Huygens CAPS electron spectrometer. Planetary and Space Science, 56 ( 7 ), 901 – 912. https://doi.org/10.1016/j.pss.2007.12.017
dc.identifier.citedreferenceLinder, D. R., Coates, A. J., Woodliffe, R. D., Alsop, C., Johnstone, A. D., Grande, et al. ( 1998 ). In F.   Pfaff, J. E.   Borovsky, & D. T.   Young (Eds.), Measurement Techniques in Space Plasmas: Particles, Geophysics Monograph Series (Vol. 102, pp. 257 – 262 ). American Geophysical Union.
dc.identifier.citedreferenceLongmore, M., Schwartz, S. J., & Lucek, E. A. ( 2006 ). Rotation of the magnetic field in Earth’s magnetosheath by bulk magnetosheath plasma flow. Annales Geophysicae, 24 ( 1 ), 339 – 354. https://doi.org/10.5194/angeo‐24‐339‐2006
dc.identifier.citedreferenceMa, X., Stauffer, B., Delamere, P. A., & Otto, A. ( 2015 ). Asymmetric Kelvin‐Helmholtz propagation at Saturn’s dayside magnetopause. Journal of Geophysical Research, 120, 1867 – 1875. https://doi.org/10.1002/2014JA020746
dc.identifier.citedreferenceMasters, A., Achilleos, N., Bertucci, C., Dougherty, M. K., Kanani, S. J., Arridge, C. S., et al. ( 2009 ). Surface waves on Saturn’s dawn flank magnetopause driven by the Kelvin‐Helmholtz instability. Planetary and Space Science, 57 ( 14‐15 ), 1769 – 1778. https://doi.org/10.1016/j.pss.2009.02.010
dc.identifier.citedreferenceMasters, A., Achilleos, N., Cutler, J. C., Coates, A. J., Dougherty, M. K., & Jones, G. H. ( 2012 ). Surface waves on Saturn’s magnetopause. Planetary and Space Science, 65 ( 1 ), 109 – 121. https://doi.org/10.1016/j.pss.2012.02.007
dc.identifier.citedreferenceMasters, A., Achilleos, N., Dougherty, M. K., Slavin, J. A., Hospodarsky, G. B., Arridge, C. S., & Coates, A. J. ( 2008 ). An empirical model of Saturn’s bow shock: Cassini observations of shock location and shape. Journal of Geophysical Research, 113, A10210. https://doi.org/10.1029/2008JA013276
dc.identifier.citedreferenceMasters, A., Achilleos, N., Kivelson, M. G., Sergis, N., Dougherty, M. K., Thomsen, M. F., et al. ( 2010 ). Cassini observations of a Kelvin‐Helmholtz vortex in Saturn’s outer magnetosphere. Journal of Geophysical Research, 115, A07225. https://doi.org/10.1029/2010JA015351
dc.identifier.citedreferenceMasters, A., Eastwood, J. P., Swisdak, M., Thomsen, M. F., Russell, C. T., Sergis, N., et al. ( 2012 ). The importance of plasma β conditions for magnetic reconnection at Saturn’s magnetopause. Geophysical Research Letters, 39, L08103. https://doi.org/10.1029/2012GL051372
dc.identifier.citedreferenceMasters, A., Phan, T. D., Badman, S. V., Hasegawa, H., Fujimoto, M., Russell, C. T., et al. ( 2014 ). The plasma depletion layer in Saturn’s magnetosheath. Journal of Geophysical Research: Space Physics, 119, 121 – 130. https://doi.org/10.1002/2013JA019516
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.