Show simple item record

Synthesis of N2‐Substituted Deoxyguanosine Nucleosides from 2‐Fluoro‐6‐O‐(Trimethylsilylethyl)‐2′‐Deoxyinosine

dc.contributor.authorHarris, Thomas M.
dc.contributor.authorHarris, Constance M.
dc.date.accessioned2018-05-15T20:16:00Z
dc.date.available2018-05-15T20:16:00Z
dc.date.issued2000-02
dc.identifier.citationHarris, Thomas M.; Harris, Constance M. (2000). "Synthesis of N2‐Substituted Deoxyguanosine Nucleosides from 2‐Fluoro‐6‐O‐(Trimethylsilylethyl)‐2′‐Deoxyinosine." Current Protocols in Nucleic Acid Chemistry 00(1): 1.3.1-1.3.19.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/143782
dc.description.abstractSyntheses of N2‐substituted nucleosides have been studied for many years, primarily with ribonucleosides. However, the primary route to these compounds requires acidic conditions that are too vigorous for the acid‐labile deoxyribonucleosides. The current strategy takes advantage of methods for low‐temperature, nonaqueous diazotization of ribosides in organic solvents using t‐butyl nitrate as the diazotizing agent and HF/pyridine as the fluoride source for the preaparation of a 2‐fluoro‐2?‐deoxyinosine derivative that can be used to synthesize N2‐substituted deoxyguanosine.
dc.publisherWiley Periodicals, Inc.
dc.publisherAldrich Chemical Co.
dc.titleSynthesis of N2‐Substituted Deoxyguanosine Nucleosides from 2‐Fluoro‐6‐O‐(Trimethylsilylethyl)‐2′‐Deoxyinosine
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143782/1/cpnc0103.pdf
dc.identifier.doi10.1002/0471142700.nc0103s00
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceWang, G. and Bergstrom, D.E. 1993. Synthesis of oligonucleotides containing N 2 ‐[2‐(imidazol‐4‐ylacetamido)ethyl]‐2′‐deoxyguanosine. Tetrahedron Lett. 34: 6725 ‐ 6728.
dc.identifier.citedreferenceRamasamy, K., Zounes, M., Gonzalez, C., Freier, S.M., Lesnik, E.A., Cummins, L.L., Griffey, R.H., Monia, B.P., and Cook, P.D. 1994. Remarkable enhancement of binding affinity of heterocycle‐modified DNA to DNA and RNA. Synthesis, characterization and biophysical evaluation of N 2 ‐imidazolylpropylguanine and N 2 ‐imidazolylpropyl‐2‐aminoadenine modified oligonucleotides. Tetrahedron Lett. 35: 215 ‐ 218.
dc.identifier.citedreferenceRobins, M.J. and Uznanski, B. 1981. Nucleic acid related compounds. 34. Non‐aqueous diazotization with tert ‐butyl nitrite. Introduction of fluorine, chlorine, and bromine at C‐2 of purine nucleosides. Can. J. Chem. 59: 2608 ‐ 2611.
dc.identifier.citedreferenceSangaiah, R., Gold, A., Ball, L.M., Matthews, D.L., and Toney, G.E. 1992. Synthesis and resolution of putative diastereomeric N 2 ‐deoxyguanosine and N 6 ‐deoxyadenosine adducts of biologically active cyclopentaPAH. Tetrahedron Lett. 33: 5487 ‐ 5490.
dc.identifier.citedreferenceSchmid, N. and Behr, J.‐P. 1995. Recognition of DNA sequences by strand replacement with polyamino‐oligonucleotides. Tetrahedron Lett. 36: 1447 ‐ 1450.
dc.identifier.citedreferenceSteinbrecher, T., Wameling, C., Oesch, F., and Seidel, A. 1993. Activation of the C2 position of purine by the trifluoromethanesulfonate group: Synthesis of N2‐alkylated deoxyguanosines. Angew. Chem. Int. Ed. Engl. 32: 404 ‐ 406.
dc.identifier.citedreferenceTsarouhtsis, D., Kuchimanchi, S., DeCorte, B.L., Harris, C.M., and Harris, T.M. 1995. Synthesis of oligonucleotides containing interchain cross‐links of bifunctional pyrroles. J. Am. Chem. Soc. 117: 11013 ‐ 11014.
dc.identifier.citedreferenceWolfe, S.A. and Verdine, G.L. 1993. Ratcheting torsional stress in duplex DNA. J. Am. Chem. Soc. 115: 12585 ‐ 12586.
dc.identifier.citedreferenceTsarouhits et al.,; DeCorte et al.,. See above.
dc.identifier.citedreferenceGerster and Robins,,. See above.
dc.identifier.citedreferenceZajc, B., Lakshman, M.K., Sayer, J.M., and Jerina, D.M. 1992. Epoxide and diol epoxide adducts of polycyclic aromatic hydrocarbons at the exocyclic amino group of deoxyguanosine. Tetrahedron Lett. 33: 3409 ‐ 3412.
dc.identifier.citedreferenceWoo, J., Sigurdsson, S.T., and Hopkins, P.B. 1993. DNA interstrand cross‐linking reactions of pyrrole‐derived, bifunctional electrophiles: Evidence for a common target site in DNA. J. Am. Chem. Soc. 115: 3407 ‐ 3415.
dc.identifier.citedreferenceAcedo, M., Fabrega, C., Avino, A., Goodman, M., Fagan, P., Wemmer, D., and Eritja, R. 1994. A simple method for N‐15 labelling of exocyclic amino groups in synthetic oligodeoxynucleotides. Nucl. Acids Res. 22: 2982 ‐ 2989.
dc.identifier.citedreferenceAdib, A., Potier, P.F., Doronina, S., Huc, I., and Behr, J.‐P. 1997. A high‐yield synthesis of deoxy‐2‐fluoroinosine and its incorporation into oligonucleotides. Tetrahedron Lett. 38: 2989 ‐ 2992.
dc.identifier.citedreferenceAldrich Chemical. 1983. Technical Bulletin AL‐134: Handling Air‐Sensitive Reagents. Aldrich Chemical Co., Milwaukee, Wis.
dc.identifier.citedreferenceAllerson, C.R., Chen, S.L., and Verdine, G.L. 1997. A chemical method for site‐specific modification of RNA: The convertible nucleoside approach. J. Am. Chem. Soc. 119: 7423 ‐ 7433.
dc.identifier.citedreferenceBergstrom, D.E. and Gerry, N.P. 1994. Precision sequence‐specific cleavage of a nucleic acid by a minor‐groove‐directed metal‐binding ligand linked through N‐2 of deoxyguanosine. J. Am. Chem. Soc. 116: 12067 ‐ 12068.
dc.identifier.citedreferenceDeCorte, B.L., Tsarouhtsis, D., Kuchimanchi, S., Cooper, M.D., Horton, P., Harris, C.M., and Harris, T.M. 1996. Improved strategies for postoligomerization synthesis of oligodeoxynucleotides bearing structurally defined adducts at the N 2 position of deoxyguanosine. Chem. Res. Toxicol. 9: 630 ‐ 637.
dc.identifier.citedreferenceDiaz, A.R., Eritja, R., and Garcia, R.G. 1997. Synthesis of oligodeoxynucleotides containing 2‐substituted guanine derivatives using 2‐fluoro‐2′‐deoxyinosine as common nucleoside precursor. Nucleosides Nucleotides 16: 2035 ‐ 2051.
dc.identifier.citedreferenceEdwards, C., Boche, G., Steinbrecher, T., and Scheer, S. 1997. Synthesis of 2‐substituted 2′‐deoxyguanosines and 6‐O‐allylguanines via activation of C‐2 by a trifluoromethanesulfonate group. J. Chem. Soc. Perkin Trans 1 1887 ‐ 1893.
dc.identifier.citedreferenceEritja, R., Acedo, M., Avino, A., and Fabrega, C. 1995. Preparation of oligonucleotides containing non‐natural base analogues. Nucleosides Nucleotides 14: 821 ‐ 824.
dc.identifier.citedreferenceErlanson, D.A., Chen, L., and Verdine, G.L. 1993. DNA methylation through a locally unpaired intermediate. J. Am. Chem. Soc. 115: 12583 ‐ 12584.
dc.identifier.citedreferenceGaffney, B.L. and Jones, R.A. 1982. A new strategy for the protection of deoxyguanosine during oligonucleotide synthesis. Tetrahedron Lett. 23: 2257 ‐ 2260.
dc.identifier.citedreferenceGerster, J.F. and Robins, R.K. 1965. Purine nucleosides. X. The synthesis of certain naturally occurring 2‐substituted amino‐9‐β‐D‐ribofuranosylpurin‐6(1H)‐ones (N 2 ‐substituted guanosines). J. Am. Chem. Soc. 87: 3752 ‐ 3759.
dc.identifier.citedreferenceGerster, J.F. and Robins, R.K. 1966. Purine nucleosides. XIII. The synthesis of 2‐fluoro‐ and 2‐chloroinosine and certain derived purine nucleosides. J. Org. Chem. 31: 3258 ‐ 3262.
dc.identifier.citedreferenceHarris, C.M., Zhou, L., Strand, E.A., and Harris, T.M. 1991. A new strategy for synthesis of oligonucleotides bearing adducts at exocyclic amino sites of purine nucleosides. J. Am. Chem. Soc. 113: 4328 ‐ 4329.
dc.identifier.citedreferenceHimmelsbach, F., Schulz, B.S., Trichtinger, T., Charubala, R., and Pfleiderer, W. 1984. The p ‐nitrophenylethyl (NPE) group. A versatile new blocking group for phosphate and aglycone protection in nucleosides and nucleotides. Tetrahedron 40: 59 ‐ 72.
dc.identifier.citedreferenceLee, H., Hinz, M., Stezowski, J.J., and Harvey, R.G. 1990. Syntheses of polycyclic aromatic hydrocarbon‐nucleoside and oligonucleotide adducts specifically alkylated on the amino functions of deoxyguanosine and deoxyadenosine. Tetrahedron Lett. 31: 6773 ‐ 6776.
dc.identifier.citedreferenceLee, H., Luna, E., Hinz, M., Stezowski, J.J., Kiselyov, A.S., and Harvey, R.G. 1995. Synthesis of oligonucleotide adducts of the bay region diol epoxide metabolites of carcinogenic polycyclic aromatic hydrocarbons. J. Org. Chem. 60: 5604 ‐ 5613.
dc.identifier.citedreferenceMatsuda, A., Shinozaki, M., Suzuki, M., Watanabe, K., and Miyasaka, T. 1986. A convenient method for the selective acylation of guanine nucleosides. Synthesis 385 ‐ 386.
dc.identifier.citedreferenceMitsunobu, O. 1981. The use of diethyl azodicarboxylate and triphenylphosphine in synthesis and transformation of natural products. Synthesis 1 ‐ 28.
dc.identifier.citedreferenceMontgomery, J.A. and Hewson, K. 1960. Synthesis of potential anticancer agents. XX. 2‐Fluoropurines. J. Am. Chem. Soc. 82: 463 ‐ 468.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.