Show simple item record

A Brief History, Status, and Perspective of Modified Oligonucleotides for Chemotherapeutic Applications

dc.contributor.authorCook, P. Dan
dc.date.accessioned2018-05-15T20:16:07Z
dc.date.available2018-05-15T20:16:07Z
dc.date.issued2000-02
dc.identifier.citationCook, P. Dan (2000). "A Brief History, Status, and Perspective of Modified Oligonucleotides for Chemotherapeutic Applications." Current Protocols in Nucleic Acid Chemistry 00(1): 4.1.1-4.1.17.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/143788
dc.description.abstractThe advent of rapid and efficient methods of oligonucleotide synthesis has allowed the design of modified oligonucleotides that are complementary to specific nucleotide sequences in mRNA targets. Such modified oligonucleotides can be used to disrupt the flow of genetic information from transcribed mRNAs to proteins. This antisense strategy has been used to develop therapeutic oligonucleotides against cancer and various infectious diseases in humans. This overview reports recent advances in the application of oligonucleotides as drug candidates, describes the relationship between oligonucleotide modifications and their therapeutic profiles, and provides general guidelines for enhancing oligonucleotide drug properties.
dc.publisherAcademic Press
dc.publisherWiley Periodicals, Inc.
dc.titleA Brief History, Status, and Perspective of Modified Oligonucleotides for Chemotherapeutic Applications
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143788/1/cpnc0401.pdf
dc.identifier.doi10.1002/0471142700.nc0401s00
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceSproat, B.S. and Lamond, A.I. 1993. 2′‐ O ‐Alkyloligoribonucleotides. In Antisense Research and Applications ( S.T. Crooke and B. Lebleu, eds.) pp. 351 ‐ 362. CRC Press, Boca Raton, Fla.
dc.identifier.citedreferenceMorishita, R., Givvons, G.H., Kaneda, Y., and Dzau, V.J. 1995. Pharmacokinetics of antisense oligodeoxynucleotides (cyclin B1 and cdc2 kinase) in the vessel wall in vivo: Enhanced therapeutic utility for restenosis by HVJ‐liposome delivery. Gene 149: 13 ‐ 19.
dc.identifier.citedreferenceMorvan, F., Porumb, H., Degols, G., Lefebvre, I., Pompon, A., Sproat, S., Rayner, B., Malvy, C., Lebleu, B., and Imbach, J.‐L. 1993. Comparative evaluation of seven oligonucleotide analogues as potential antisense agents. J. Med. Chem. 36: 280 ‐ 287.
dc.identifier.citedreferenceMoser, H.E. and Dervan, P.B. 1987. Sequence‐specific cleavage of double helical DNA by triple helix formation. Science 238: 645 ‐ 650.
dc.identifier.citedreferenceNicklin, P. 1998. Pharmacokinetics properties of phosphorothioates in animals. In Handbook of Experimental Pharmacology ( S.T. Crooke, ed.) pp. 141 ‐ 168. Springer‐Verlag, Heidelberg, Germany.
dc.identifier.citedreferencePrasmickaite, L., Hogset, A., Maelandsmo, G., Berg, K., Goodchild, J., Perkins, T., Fodstad, O., and Hovig, E. 1998. Intracellular metabolism of a 2′‐ O ‐methyl‐stabilized ribozyme after uptake by DOTAP transfection or as free ribozyme. A study by capillary electrophoresis. Nucl. Acids Res. 26: 4241 ‐ 4248.
dc.identifier.citedreferenceRossi, J.J. 1998. Therapeutic ribozymes: Principles, applications, and problems. In Applied Antisense Oligonucleotide Technology ( C.A. Stein and A.M. Krieg, eds.) pp. 511 ‐ 525. Wiley‐Liss, New York.
dc.identifier.citedreferenceSands, H., Gorey‐Feret, L.J., Ho, S.P., Bao, Y., Cocuzza, A.J., Chidester, D., and Hobbs, F.W. 1995. Biodistribution and metabolism of internally 3H‐labeled oligonucleotides. II. 3′,5′‐Blocked oligonucleotides. Therapeutics 47: 636 ‐ 646.
dc.identifier.citedreferenceSheffery, M. and Gordon, C.L. 1996. Leadership positions in antisense patents (company report). Mehta and Isaly Equity Research, New York.
dc.identifier.citedreferenceSproat, B.S., Lamond, A.I., Beijer, B., and Neuner, U. 1989. Highly efficient chemical synthesis of 2′‐ O ‐methyloligoribonucleotides and tetrabio‐tinylated derivatives; novel probes that are resistant to degradation by RNA or DNA specific nucleases. Nucl. Acids Res. 17: 3373 ‐ 3386.
dc.identifier.citedreferenceStephenson, M.L. and Zamecnik, P.C. 1978. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc. Natl. Acad. Sci. U.S.A. 75: 285 ‐ 288.
dc.identifier.citedreferenceSummerton, J. 1979. Intracellular inactivation of specific nucleotide sequences: A general approach to the treatment of viral diseases and virally‐mediated cancers. J. Ther. Biol. 78: 77 ‐ 99.
dc.identifier.citedreferenceTorrence, P.F., Xiao, W., Li, G., Lesnik, K., Khamnei, S., Maran, A., Maitra, R., Dong, B., and Silverman, R.H. 1994. 2′,5′‐Oligoadenylate antisense chimeras for targeted ablation of RNA in carbohydrate modifications. In Antisense Research ( Y.S. Sanghvi and P.D. Cook, eds.) pp. 118 ‐ 132. American Chemical Society, Washington, D.C.
dc.identifier.citedreferenceTs’o, P.O., Miller, P.S., Aurelian, L., Murakami, A., Agris, C., Blake, K.R., Lin, S.B., Lee, B.L., and Smith, C.C. 1987. An approach to chemotherapy based on base sequence information and nucleic acid chemistry. Matagen (masking tape for gene expression). Ann. N.Y. Acad. Sci. 507: 220 ‐ 241.
dc.identifier.citedreferenceTuerk, C. and Gold, L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249: 505 ‐ 510.
dc.identifier.citedreferenceWagner, R.W., Matteucci, M.D., Grant, D., Huang, T., and Froehler, B.C. 1996. Potent and selective inhibition of gene expression by an antisense heptanucleotide. Nat. Biotechnol. 14: 840 ‐ 844.
dc.identifier.citedreferenceYu, D., Iyer, R.P., Shaw, D.R., Lisziewicz, J., Li, Y., Jiang, Z., Roskey, A., and Agrawal, S. 1996. Hybrid oligonucleotides: Synthesis, biophysical properties, stability studies, and biological activity. Bioorg. Med. Chem. Lett. 4: 1685 ‐ 1692.
dc.identifier.citedreferenceZamecnik, P.C. and Stephenson, M.L. 1978. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. U.S.A. 75: 280 ‐ 284.
dc.identifier.citedreferenceZhang, R., Iyer, R.P., Yu, D., Tan, W., Zhang, X., Lu, Z., Zhao, H., and Agrawal, S. 1996. Pharmaco‐kinetics and tissue disposition of a chimeric oligodeoxynucleoside phosphorothioate in rats after intravenous administration. J. Pharmacol. Exper. Ther. 278: 971 ‐ 979.
dc.identifier.citedreferenceZon, G. 1993. History of antisense drug discovery. In Antisense Research and Applications ( S.T. Crooke and B. Lebleu, eds.) pp. 1 ‐ 5. CRC Press, Boca Raton, Fla.
dc.identifier.citedreferenceAgrawal, S., Mayrand, S.H., Zamecnik, P.C., and Pederson, T. 1990. Site‐specific excision from RNA by RNase H and mixed‐phosphate‐backbone oligodeoxynucleotides. Proc. Natl. Acad. Sci. U.S.A. 87: 1401 ‐ 1405.
dc.identifier.citedreferenceAgrawal, S., Zhang, X., Lu, Z., Zhao, H., Tamburin, J.M., Yan, J., Cai, H., Diasio, R.B., Habus, I., Jiang, Z., Iyer, R.P., Yu, D., and Zhang, R. 1995. Absorption, tissue distribution and in vivo stability in rats of a hybrid antisense oligonucleotide following oral administration. Biochem. Pharmacol. 50: 571 ‐ 576.
dc.identifier.citedreferenceAlderfer, J.L., Loomis, R.E., Soni, S.D., Sharma, M., Bernacki, R., and Hughes, R. Jr. 1985. Halogenated nucleic acids: Biochemical and biological properties of fluorinated polynucleotides. Polymeric Mater. Med. 32: 125 ‐ 138.
dc.identifier.citedreferenceAltman, S. 1989. Ribonuclease P: An enzyme with a catalytic RNA subunit. Adv. Enzymol. 62: 1 ‐ 36.
dc.identifier.citedreferenceAltmann, K.H., Dean, N.M., Fabbro, D., Freier, S.M., Geiger, T., Häner, R., Hüsken, D., Martin, P., Monia, B.P., Müller, M., Natt, F., Nicklin, P., Phillips, J., Pieles, U., Sasmor, H., and Moser, H.E. 1996a. Second generation of antisense oligonucleotides: From nuclease resistance to biological efficacy in animals. Chimia 50: 168 ‐ 176.
dc.identifier.citedreferenceAltmann, K.H., Kesselring, R., and Pieles, U. 1996b. 6′‐Carbon‐substituted carbocyclic analogs of 2′‐deoxyribonucleosides: Synthesis and effect on DNA/RNA duplex stability. Tetrahedron 52: 12699 ‐ 12722.
dc.identifier.citedreferenceAltmann, K.H., Fabbrot, D., Dean, N.M., Geiger, T., Monia, B.P., Muller, M., and Nicklin, P. 1996c. Second‐generation antisense oligonucleotides: Structure‐activity/relationships and the design of improved signal‐transduction inhibitors. Biochem. Soc. Trans. 24: 630 ‐ 637.
dc.identifier.citedreferenceAltmann, K.H., Martin, P., Dean, N.M., and Monia, B.P. 1997. Second generation antisense oligonucleotides—inhibition of pkc‐α and c‐ raf kinase expression by chimeric oligonucleotides incorporating 6′‐substituted carbocyclic nucleosides and 2′‐ O ‐ethylene glycol substituted ribonucleosides. Nucleosides Nucleotides 16: 917.
dc.identifier.citedreferenceBacher, J.M. and Ellington, A.D. 1998. Nucleic acid selection as a tool for drug discovery. Drug Discovery Today 3: 265.
dc.identifier.citedreferenceBardos, T.J. and Ho, Y.K. 1978. Chemical and Enzymatic Methods in the Synthesis of Modified Polynucleotides. In Symposium on the Chemistry and Biology of Nucleosides and Nucleotides ( R.E. Harmon, R.K. Robins, and L. Townsend, eds.) pp. 55 ‐ 68. Academic Press, Orlando, Fla.
dc.identifier.citedreferenceBelikova, A.M., Zarytova, V.F., and Grivneva, N.I. 1967. Synthesis of ribonucleosides and diribonucleoside phosphates containing 2‐chloroethylamine and nitrogen mustard residues. Tetrahedron Lett. 7: 3557 ‐ 3562.
dc.identifier.citedreferenceBuhr, C.A., Wagner, R.W., Grant, D., and Froehler, B.C. 1996. Oligodeoxynucleotides containing C‐7 propyne analogs of 7‐deaza‐2′‐deoxyguanosine and 7‐deaza‐2′‐deoxyadenosine. Nucl. Acids Res. 24: 2974 ‐ 2980.
dc.identifier.citedreferenceCech, T.R. 1986. RNA as an enzyme. Sci. Am. 255: 64 ‐ 75.
dc.identifier.citedreferenceChandra, P. and Bardos, T.J. 1972. Inhibition of DNA polymerases from RNA tumor viruses by novel template analogs. Partially thiolated polycytidylic acid. Res. Commun. Chem. Pathol. Pharmacol. 4: 615 ‐ 622.
dc.identifier.citedreferenceCohen, J.S. 1991. Informational drugs: A new concept in pharmacology. Antisense Res. Dev. 1: 191 ‐ 193.
dc.identifier.citedreferenceConnell, C., Fung, S., Heiner, C., Bridgham, J. Chakarian, V., Heron, E., Jones, R., Menchen, S., Mordan, W., Raff, M., Recknor, M., Smith, L., Springer, J., Woo, S., and Hunkapiller, M. 1987. Automated DNA sequence analysis. BioTechniques 5: 342.
dc.identifier.citedreferenceCook, P.D. 1991. Medicinal chemistry of antisense oligonucleotides—future opportunities. Anti‐Cancer Drug Design 6: 585 ‐ 607.
dc.identifier.citedreferenceCook, P.D. 1993. Medicinal chemistry strategies for antisense research. In Antisense Research and Applications ( S.T. Crooke and B. Lebleu, eds.) pp. 149 ‐ 187 CRC Press, Boca Raton, Fla.
dc.identifier.citedreferenceCook, P.D. 1998a. Antisense medicinal chemistry. In Handbook of Experimental Pharmacology ( S.T. Crooke, ed.) pp. 51 ‐ 101 Springer‐Verlag, Heidelberg, Germany.
dc.identifier.citedreferenceCook, P.D. 1998b. Second generation antisense oligonucleotides: 2′‐Modifications. Annu. Rep. Med. Chem. 33: 313.
dc.identifier.citedreferenceCook, P.D. 1999. Making drugs out of oligonucleotides: A brief review and perspective. Nucleosides Nucleotides 18: 1141 ‐ 1162.
dc.identifier.citedreferenceCraig, A., Vanstone, D., and Sudhir, A. 1997. Patent strategies in the antisense oligonucleotide based therapeutic approach. Expert Opin. Ther. 7: 1175.
dc.identifier.citedreferenceCrooke, S.T., Lemonidis, K.M., Neilson, L., Griffey, R., Lesnik, E.A., and Monia, B.P. 1995. Kinetic characteristics of Escherichia coli RNase H1: Cleavage of various antisense oligonucleotide‐RNA duplexes. J. Biochem. 312: 599 ‐ 608.
dc.identifier.citedreferenceCrooke, S.T., Graham, M.J., Zuckerman, J.E., Brooks, D., Conklin, B.S., Cummins, L.L., Greig, M.J., Guinosso, C.J., Kornbrust, D., Manoharan, M., Sasmor, H.M., Schleich, T., Tivel, K.L., and Griffey, R.H. 1996a. Pharmacokinetic properties of several novel oligonucleotide analogs in mice. J. Pharmacol. Exp. Ther. 277: 923 ‐ 937.
dc.identifier.citedreferenceCrooke, S.T., Bernstein, L.S., and Boswell, H. 1996b. Progress in the development and patenting of antisense drug discovery technology. Expert Opin. Ther. 6: 855 ‐ 870.
dc.identifier.citedreferenceCummins, L.L., Owens, S.R., Risen, L.M., Lesnik, E.A., Freier, S.M., McGee, D., Guinosso, C.J., and Cook, P.D. 1995. Characterization of fully 2′‐modified oligoribonucleotide hetero‐ and homoduplex hybridization and nuclease sensitivity. Nucl. Acids Res. 23: 2019 ‐ 2024.
dc.identifier.citedreferenceDagle, J.M., Andracki, M.E., DeVine, R.J., and Walder, J.A. 1991. Physical properties of oligonucleotides containing phosphoramidate‐modified internucleoside linkages. Nucl. Acids Res. 19: 1805 ‐ 1810.
dc.identifier.citedreferenceDe Clercq, E., Eckstein, F., and Merigan, T.C. 1969. Interferon induction increased through chemical modification of a synthetic polyribonucleotide. Science 165: 1137 ‐ 1139.
dc.identifier.citedreferenceDeMesmaeker, A., Haner, R., Martin, P., and Moser, H.E. 1995. Antisense oligonucleotides. Acc. Chem. Res. 28: 366 ‐ 374.
dc.identifier.citedreferenceEllington, A.D. and Szostak, J.W. 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346: 818 ‐ 822.
dc.identifier.citedreferenceFreier, S.M. and Altmann, K.‐H. 1997. The ups and downs of nucleic acid duplex stability: Structure‐stability studies on chemically‐modified DNA: RNA duplexes. Nucl. Acids Res. 25: 4429 ‐ 4443.
dc.identifier.citedreferenceFreier, S.M., Lima, W.F., Sanghvi, Y.S., Vickers, T., Zounes, M., Cook, P.D., and Ecker, D.J. 1992. Thermodynamics of antisense oligonucleotide hybridization. In Gene Regulation: Biology of Antisense RNA and DNA, Vol. 1 (Series: Molecular Cellular Biology) ( R.P. Erickson and J.G. Izant, eds.) pp. 95 ‐ 107. Raven Press, New York.
dc.identifier.citedreferenceGriffey, R.H., Monia, B.P., Cummins, L.L., Freier, S., Greig, M.J., Guinosso, C.J., Lesnik, E., Manalili, S.M., Mohan, V., Owens, S., Ross, B.R., Sasmor, H., Wancewicz, E., Weiler, K., Wheeler, P.D., and Cook, P.D. 1996. 2′‐ O ‐aminopropyl ribonucleotides: A zwitterionic modification that enhances the exonuclease resistance and biological activity of antisense oligonucleotides. J. Med. Chem. 39: 5100 ‐ 5109.
dc.identifier.citedreferenceGuinosso, C.J., Hoke, G.D., Freier, S.M., Martin, J.F., Ecker, D.J., Mirabelli, C.K., Crooke, S.T., and Cook, P.D. 1991. Synthesis and biophysical and biological evaluation of 2′‐modified anti‐sense oliogonucleotides Nucleosides Nucleotides 10: 259 ‐ 262.
dc.identifier.citedreferenceHeidenreich, O., Gryaznov, S., and Nerenberg, M. 1997. RNase H‐independent antisense activity of oligonucleotide N3′‐P5′ phosphorothioates. Nucl. Acids Res. 25: 776.
dc.identifier.citedreferenceHelene, C. 1993. Control of gene expression by triple‐helix‐forming oligonucleotides: The antigene strategy. In Antisense Research and Applications ( S.T. Crooke and B. Lebleu, eds.) pp. 375 ‐ 385. CRC Press, Boca Raton, Fla.
dc.identifier.citedreferenceHoke, G.D., Draper, K., Freier, S.M., Gonzalez, C., Driver, V.B., and Zounes, M.C. 1991. Effects of phosphorothioate capping on antisense oligonucleotide stability, hybridization and antiviral efficacy versus herpes simplex virus infection. Nucl. Acids Res. 19: 5743.
dc.identifier.citedreferenceKawasaki, A.M., Casper, M.D., Freier, S.M., Lesnik, E.A., Zounes, M.C., Cummins, L.L., Gonzalez, C., and Cook, P.D. 1993. Uniformly modified 2′‐deoxy‐2′‐fluoro phosphorothioate oligonucleotides as nuclease‐resistant antisense compounds with high affinity and specificity for RNA targets. J. Med. Chem 36: 831 ‐ 841.
dc.identifier.citedreferenceLeDoan, T., Perrouault, L., Praseuth, D., Habhoub, N., Decout, J.L., Thuong, N.T., Lhomme, J., and Helene, C. 1987. Sequence‐specific recognition, photocrosslinking and cleavage of the DNA double helix by an oligo‐[α]‐thymidylate covalently linked to an azidoproflavine derivative. Nucl. Acids Res. 15: 7749.
dc.identifier.citedreferenceLesnik, EA., Guinosso, C.J., Kawasaki, A.M., Sasmor, H., Zounes, M., Cummins, L.L., Ecker, D.J., Cook, P.D., and Freier, S.M. 1993. Oligodeoxynucleotides containing 2′‐ O ‐modified adenosine: Synthesis and effects on stability of DNA:RNA duplexes. Biochemistry 32: 7832 ‐ 7838.
dc.identifier.citedreferenceLima, W.F. and Crooke, S.T. 1997. Binding affinity and specificity of Escherichia coli RNase H1: Impact on the kinetics of catalysis of antisense oligonucleotide‐RNA hybrids. Biochemistry 36: 390 ‐ 398.
dc.identifier.citedreferenceManoharan, M. 1993. Designer antisense oligonucleotides: Conjugation chemistry and functionality placement. In Antisense Research and Applications ( S.T. Crooke and B. Lebleu, eds.) pp. 303 ‐ 349 CRC Press, Boca Raton, Fla.
dc.identifier.citedreferenceMatteucci, M.D. and von Krosigk, U. 1996. Hybridization properties of oligonucleotides bearing a tricyclic 2′‐deoxycytidine analog based on a carbazole ring system. Tetrahedron Lett. 37: 5057 ‐ 5060.
dc.identifier.citedreferenceMiller, P.S., Bhan, P., Cushman, C.D., Kean, J.M., and Levis, J.T. 1991. Antisense oligonucleotide methylphosphonates and their derivatives. Nucleosides Nucleotides 10: 37 ‐ 46.
dc.identifier.citedreferenceMonia, B.P., Lesnik, E.A., Gonzalez, C., Lima, W.F., McGee, D., Guinosso, C.J., Kawasaki, A.M., Cook, P.D., and Freier, S.M. 1993. Evaluation of 2′‐modified oligonucleotides containing 2′‐deoxy gaps as antisense inhibitors of gene expression. J. Biol. Chem. 268: 14514 ‐ 14522.
dc.identifier.citedreferenceMonia, B.P., Johnston, J.F., Sasmor, H., and Cummins, L.L. 1996. Nuclease resistance and anti‐sense activity of modified oligonucleotides targeted to Ha‐ ras. J. Biol. Chem. 271: 14533 ‐ 14540.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.