Show simple item record

Reversible Biotinylation of the 5′‐Terminus of Oligodeoxyribonucleotides and its Application in Affinity Purification

dc.contributor.authorFang, Shiyue
dc.contributor.authorBergstrom, Donald E.
dc.date.accessioned2018-05-15T20:16:13Z
dc.date.available2018-05-15T20:16:13Z
dc.date.issued2003-09
dc.identifier.citationFang, Shiyue; Bergstrom, Donald E. (2003). "Reversible Biotinylation of the 5′‐Terminus of Oligodeoxyribonucleotides and its Application in Affinity Purification." Current Protocols in Nucleic Acid Chemistry 14(1): 4.20.1-4.20.17.
dc.identifier.issn1934-9270
dc.identifier.issn1934-9289
dc.identifier.urihttps://hdl.handle.net/2027.42/143794
dc.description.abstractThe preparation of two reversible biotinylation phosphoramidites and their application in labeling and affinity purification of synthetic oligodeoxyribonucleotides will be described. In both cases, the biotin is linked to the 5′‐terminus of DNA through a diisopropyl silyl acetal functionality. This linkage is completely stable under certain postsynthetic cleavage/deprotection conditions, but can be readily broken by fluoride ions, releasing unmodified 5′‐OH and 5′‐phosphate DNA, respectively. To demonstrate the use of these reversible biotinylation methods, crude DNA was incubated with NeutrAvidin‐coated microspheres, full‐length biotinylated DNA was efficiently attached to the solid phase, and nonbiotinylated failure sequences and other impurities were readily removed by washing with buffer. Cleavage of the silyl acetal linkage afforded high‐quality, full‐length, unmodified 5′‐OH and 5′‐phosphate DNA, respectively, depending on which of the two phosphoramidites was used. It is anticipated that this method will find applications in areas that require efficient isolation of DNA from a complex mixture.
dc.publisherJohn Wiley & Sons
dc.subject.otherDNA
dc.subject.otherAvidin
dc.subject.otherSilyl Acetal
dc.subject.otherFluoride Cleavage
dc.subject.otherBiotinylation
dc.subject.otherPhosphoramidite
dc.subject.otherAffinity Purification
dc.titleReversible Biotinylation of the 5′‐Terminus of Oligodeoxyribonucleotides and its Application in Affinity Purification
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143794/1/cpnc0420.pdf
dc.identifier.doi10.1002/0471142700.nc0420s14
dc.identifier.sourceCurrent Protocols in Nucleic Acid Chemistry
dc.identifier.citedreferenceFang, S. and Bergstrom, D.E. 2003b. Fluoride‐cleavable biotinylation phosphoramidite for 5′‐end‐labeling, affinity purification of synthetic oligonucleotides. Nucl. Acids Res. 31: 708 ‐ 715.
dc.identifier.citedreferenceAgrawal, S., Christodoulou, C., and Gait, M.J. 1986. Efficient methods for attaching non‐radioactive labels to the 5′ ends of synthetic oligodeoxyribonucleotides. Nucl. Acids Res. 14: 6227 ‐ 6245.
dc.identifier.citedreferenceDawson, B.A., Herman, T., Haas, A.L., and Lough, J. 1991. Affinity isolation of active murine erythroleukemia cell chromatin: Uniform distribution of ubiquitinated histone H2A between active and inactive fractions. J. Cell. Biochem. 46: 166 ‐ 173.
dc.identifier.citedreferenceDe Vos, M.J., Van Elsen, A., and Bollen, A. 1994. New non‐nucleosidic phosphoramidites for the solid phase multi‐labeling of oligonucleotides: Comb‐ and multifork‐like structure. Nucleosides Nucleotides 13: 2245 ‐ 2265.
dc.identifier.citedreferenceFang, S. and Bergstrom, D.E. 2003a. Reversible biotinylation phosphoramidite for 5′‐end‐labeling, phosphorylation and affinity purification of synthetic oligonucleotides. Bioconjugate Chem. 14: 80 ‐ 85.
dc.identifier.citedreferenceGildea, B.D., Coull, J.M., and Koster, H. 1990. A versatile acid‐labile linker for modification of synthetic biomolecules. Tetrahedron Lett. 31: 7095 ‐ 7098.
dc.identifier.citedreferenceCadet, J. and Vigny, P. 1990. The photochemistry of nucleic acids. In Bioorganic Photochemistry ( H. Morrison, ed.)Vol. 1, pp. 170 ‐ 184. John Wiley & Sons, New York.
dc.identifier.citedreferenceWincott, F., DiRenzo, A., Shaffer, C., Grimm, S., Tracz, D., Workman, C., Sweedler, D., Gonzalez, C., Scaringe, S., and Usman, N. 1995. Synthesis, deprotection, analysis and purification of RNA and ribozymes. Nucl. Acids Res. 23: 2677 ‐ 2684.
dc.identifier.citedreferenceUrdea, M.S., Warner, B.D., Running, J.A., Stempien, M., Clyne, J., and Horn, T. 1988. A comparison of non‐radioisotopic hybridization assay methods using fluorescent, chemiluminescent and enzyme labeled synthetic oligodeoxyribonucleotide probes. Nucl. Acids Res. 16: 4937 ‐ 4956.
dc.identifier.citedreferenceShimkus, M., Levy, J., and Herman, T. 1985. A chemically cleavable biotinylated nucleotide: Usefulness in the recovery of protein‐DNA complexes from avidin affinity columns. Proc. Natl. Acad. Sci. U.S.A. 82: 2593 ‐ 2597.
dc.identifier.citedreferenceReddy, M.P., Hanna, N.B., and Farooqui, F. 1994. Fast cleavage and deprotection of oligonucleotides. Tetrahedron Lett. 35: 4311 ‐ 4314.
dc.identifier.citedreferencePon, R.T. 1991. A long chain biotin phosphoramidite reagent for the automated synthesis of 5′‐biotinylated oligonucleotides. Tetrahedron Lett. 32: 1715 ‐ 1718.
dc.identifier.citedreferenceOlejnik, J., Krzymanska‐Olejnik, E., and Rothschild, K.J. 1996. Photocleavable biotin phosphoramidite for 5′‐end‐labelling, affinity purification and phosphorylation of synthetic oligonucleotides. Nucl. Acids Res. 24: 361 ‐ 366.
dc.identifier.citedreferenceNeuner, P. 1996. New non nucleosidic phosphoramidite reagent for solid phase synthesis of biotinylated oligonucleotides. Bioorg. Med. Chem. Lett. 6: 147 ‐ 152.
dc.identifier.citedreferenceMcInnes, J.L. and Symons, R.H. 1989. Preparation and detection of nonradioactive nucleic acid and oligonucleotide probes. In Nucleic Acid Probes ( R.H. Symons, ed.)pp. 33 ‐ 80. CRC Press, Boca Raton, Fla.
dc.identifier.citedreferenceLanger, P.R., Waldrop, A.A., and Ward, D.C. 1981. Enzymatic synthesis of biotin‐labeled polynucleotides: Novel nucleic acid affinity probes. Proc. Natl. Acad. Sci. U.S.A. 78: 6633 ‐ 6637.
dc.identifier.citedreferenceGuzaev, A., Salo, H., Azhayev, A., and Lönnberg, H. 1995. A new approach for chemical phosphoryl‐ation of oligonucleotides at the 5′‐terminus. Tetrahedron 51: 9375 ‐ 9384.
dc.identifier.citedreferenceGreenberg, M.M. and Gilmore, J.L. 1994. Cleavage of oligonucleotides from solid‐phase supports using o ‐nitrobenzyl photochemistry. J. Org. Chem. 59: 746 ‐ 753.
dc.identifier.citedreferenceGreenberg, M.M. 1995. Photochemical release of protected oligodeoxyribonucleotides containing 3′‐glycolate termini. Tetrahedron 51: 29 ‐ 38.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.