Show simple item record

Systematic Evaluation of Skeletal Mechanical Function

dc.contributor.authorSmith, Lauren
dc.contributor.authorBigelow, Erin M.R.
dc.contributor.authorJepsen, Karl J.
dc.date.accessioned2018-05-15T20:16:26Z
dc.date.available2018-05-15T20:16:26Z
dc.date.issued2013-06
dc.identifier.citationSmith, Lauren; Bigelow, Erin M.R.; Jepsen, Karl J. (2013). "Systematic Evaluation of Skeletal Mechanical Function." Current Protocols in Mouse Biology 3(2): 39-67.
dc.identifier.issn2161-2617
dc.identifier.issn2161-2617
dc.identifier.urihttps://hdl.handle.net/2027.42/143805
dc.description.abstractMany genetic and environmental perturbations lead to measurable changes in bone morphology, matrix composition, and matrix organization. Here, straightforward biomechanical methods are described that can be used to determine whether a genetic or environmental perturbation affects bone strength. A systematic method is described for evaluating how bone strength is altered in the context of morphology and tissue‐level mechanical properties, which are determined in large part from matrix composition, matrix organization, and porosity. The methods described include computed tomography, whole‐bone mechanical tests (bending and compression), tissue‐level mechanical tests, and determination of ash content, water content, and bone density. This strategy is intended as a first step toward screening mice for phenotypic effects on bone and establishing the associated biomechanical mechanism by which function has been altered, and can be conducted without a background in engineering. The outcome of these analyses generally provides insight into the next set of experiments required to further connect cellular perturbation with functional change. Curr. Protoc. Mouse Biol. 3:39‐67 © 2013 by John Wiley & Sons, Inc.
dc.publisherWiley Periodicals, Inc.
dc.subject.othercortical bone
dc.subject.othertrabecular bone
dc.subject.othernanocomputed tomography
dc.subject.otherstrength
dc.subject.otherbiomechanics
dc.subject.otherbone
dc.subject.otheradaptation
dc.titleSystematic Evaluation of Skeletal Mechanical Function
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143805/1/cpmo130027.pdf
dc.identifier.doi10.1002/9780470942390.mo130027
dc.identifier.sourceCurrent Protocols in Mouse Biology
dc.identifier.citedreferenceBonadio, J., Jepsen, K.J., Mansoura, M.K., Jaenisch, R., Kuhn, J.L., and Goldstein, S.A. 1993. A murine skeletal adaptation that significantly increases cortical bone mechanical properties. Implications for human skeletal fragility. J. Clin. Invest. 92: 1697 ‐ 1705.
dc.identifier.citedreferenceJepsen, K.J. 2009. Systems analysis of bone. Wiley Interdiscip. Rev. Syst. Biol. Med. 1: 73 ‐ 88.
dc.identifier.citedreferenceFuruya, K., Nifuji, A., Rosen, V., and Noda, M. 1999. Effects of GDF7/BMP12 on proliferation and alkaline phosphatase expression in rat osteoblastic osteosarcoma ROS 17/2.8 cells. J. Cell. Biochem. 72: 177 ‐ 180.
dc.identifier.citedreferenceDonovan, J. and Brown, P. 2006. Euthanasia. Curr. Protoc. Immunol. 73: 1.8.1 ‐ 1.8.4.
dc.identifier.citedreferenceWright, S. 1921. Correlation and causation. J. Agric. Res. 20: 557 ‐ 585.
dc.identifier.citedreferenceWaddington, C.H. 1942. Canalization of development and the inheritance of acquired characters. Nature 14: 563 ‐ 565.
dc.identifier.citedreferenceNadeau, J.H., Burrage, L.C., Restivo, J., Pao, Y.H., Churchill, G., and Hoit, B.D. 2003. Pleiotropy, homeostasis, and functional networks based on assays of cardiovascular traits in genetically randomized populations. Genome Res. 13: 2082 ‐ 2091.
dc.identifier.citedreferenceMarder, E. and Goaillard, J.M. 2006. Variability, compensation and homeostasis in neuron and network function. Nat. Rev. Neurosci. 7: 563 ‐ 574.
dc.identifier.citedreferenceMaloul, A., Rossmeier, K., Mikic, B., Pogue, V., and Battaglia, T. 2006. Geometric and material contributions to whole‐bone structural behavior in GDF‐7‐deficient mice. Connect. Tissue Res. 47: 157 ‐ 162.
dc.identifier.citedreferenceLou, J., Tu, Y., Burns, M., Silva, M.J., and Manske, P. 2001. BMP‐12 gene transfer augmentation of lacerated tendon repair. J. Orthop. Res. 19: 1199 ‐ 1202.
dc.identifier.citedreferenceJepsen, K.J., Courtland, H.‐W., and Nadeau, J.H. 2010. Genetically‐determined phenotype covariation networks control bone strength. J. Bone Miner. Res. 25: 1581 ‐ 1593.
dc.identifier.citedreferenceJepsen, K.J., Hu, B., Tommasini, S.M., Courtland, H.‐W., Price, C., Cordova, M., and Nadeau, J.H. 2009. Phenotypic integration of skeletal traits during growth buffers genetic variants affecting the slenderness of femora in inbred mouse strains. Mamm. Genome 20: 21 ‐ 33.
dc.identifier.citedreferenceJepsen, K.J., Hu, B., Tommasini, S.M., Courtland, H.‐W., Price, C., Terranova, C.J., and Nadeau, J.H. 2007. Genetic randomization reveals functional relationships among morphologic and tissue‐quality traits that contribute to bone strength and fragility. Mamm. Genome 18: 492 ‐ 507.
dc.identifier.citedreferenceJepsen, K.J., Davy, D.T., and Krzypow, D.J. 1999. The role of the lamellar interface during torsional yielding of human cortical bone. J. Biomech. 32: 303 ‐ 310.
dc.identifier.citedreferenceJepsen, K.J., Schaffler, M.B., Kuhn, J.L., Goulet, R.W., Bonadio, J., and Goldstein, S.A. 1997. Type I collagen mutation alters the strength and fatigue behavior of Mov13 cortical tissue. J. Biomech. 30: 1141 ‐ 1147.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.