Show simple item record

Optimal Control of the Advection-Diffusion Equation for Effective Fluid Mixing

dc.contributor.authorMiles, Christopher
dc.date.accessioned2018-06-07T17:44:48Z
dc.date.availableNO_RESTRICTION
dc.date.available2018-06-07T17:44:48Z
dc.date.issued2018
dc.date.submitted2018
dc.identifier.urihttps://hdl.handle.net/2027.42/143927
dc.description.abstractMixing is a fundamental fluid mechanism that is crucial to the engineering of industrial processes within the chemical, pharmaceutical, petrochemical, food, and many other industries. Mixing is also important to areas of science including oceanography, turbulence, and atmospheric sciences. An important question to many domains is ``How does one mix efficiently?" We strive to make progress towards this question by studying a series of optimization problems on mixing. The first study presented is on optimization of a shell model of mixing. This model is based on a system of ordinary differential equations which mimic the time evolution of the Fourier spectrum of a dye concentration governed by the advection-diffusion equation. We investigate the local-in-time and global-in-time optimization within this model and show that mixing can be limited by diffusion. The second study investigates local-in-time optimization of the advection-diffusion partial differential equation. We demonstrate that many of the observations seen in the shell model extend to this setting such as evidence of a limitation on mixing by the inclusion of diffusion. Lastly, we explore global-in-time optimization of the advection-diffusion equation. This last study is ongoing research at the moment: current results on this topic are presented and a comparison between local-in-time and global-in-time optimization is discussed.
dc.language.isoen_US
dc.subjectfluid mixing
dc.subjectadvection-diffusion equation
dc.subjectoptimal control theory
dc.subjectdiffusion
dc.titleOptimal Control of the Advection-Diffusion Equation for Effective Fluid Mixing
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplinePhysics
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.contributor.committeememberDoering, Charles R
dc.contributor.committeememberCapecelatro, Jesse Samuel
dc.contributor.committeememberBloch, Anthony M
dc.contributor.committeememberDeegan, Robert David
dc.contributor.committeememberNewman, Mark E
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbtoplevelScience
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143927/1/cmiless_1.pdf
dc.identifier.orcid0000-0003-3813-5050
dc.identifier.name-orcidMiles, Christopher; 0000-0003-3813-5050en_US
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.