Show simple item record

The Electronic and Atomic Structure of Actinide Contaminants at the Mineral-Fluid Interface

dc.contributor.authorGebarski, Benjamin
dc.date.accessioned2018-06-07T17:46:50Z
dc.date.availableNO_RESTRICTION
dc.date.available2018-06-07T17:46:50Z
dc.date.issued2018
dc.date.submitted
dc.identifier.urihttps://hdl.handle.net/2027.42/144048
dc.description.abstractGeochemical reactions at the mineral-water interface are a critical factor in the mobility of actinide contaminants such as those intrinsic to nuclear waste storage facilities. Actinides can undergo a number of sorption, phase, and oxidation state changes that control their interactions with the surrounding environment. This dissertation investigates the redox behavior, sorption, thermodynamics, and kinetics of actinides at a near-atomistic scale in order to further the understanding of actinide chemistry in the environment. Novel and combined multi-method approaches utilizing experimentation and atomistic modeling were developed to achieve a detailed understanding of both naturally-occurring and synthetic actinides, specifically uranium (U) and plutonium (Pu), and the mechanisms that may lead to their immobilization at the mineral-fluid interface. In reducing conditions, soluble uranyl(VI) (UO22+) can be reduced to insoluble U(IV)O2 solid, resulting in the decrease of its mobility within the environment. Chapter 2 is an electrochemical investigation of U(VI) redox interactions in a relatively uncharacterized synthetic uranyl peroxide material called uranium-60 nanoclusters (U60) and their natural analog, the mineral studtite. Results indicate a two-step, one-electron irreversible reduction of U(VI) to U(IV) resulting in the fragmentation of the U60 cluster and the studtite crystalline structure. Utilizing a combined approach with spectroscopic and computational methods, electrochemical redox responses were assigned to specific or concurrent reactions, possibly indicating the existence of an uncommon U(V) superoxo intermediate phase within U60 clusters. Actinide contaminants such as uranyl peroxides can also be immobilized via redox or adsorption reactions catalyzed by mineral surfaces. Therefore Chapter 3 uses electrochemical atomic force microscopy (EC-AFM) in conjunction with spectroscopic methods to image redox reactions and sorbates at the mineral-fluid interface directly. Results indicate the growth of U60 nanostructures adsorbed to mineral surfaces in either face-centered cubic (FCC) crystalline or composite clusters, the fragmentation of U60 upon reduction, and the observation of a fibrous nanoparticle that could be completely uncharacterized in the literature. Actinides exceptionally mobile in aqueous conditions, such as pentavalent plutonyl (PuO2+), can be immobilized without a change in oxidation state via adsorption or incorporation into mineral hosts. Thus, Chapter 4 is a theoretical investigation of incorporation of plutonyl [Pu(V)] ions into carbonates and sulfates; minerals ubiquitous in subsurface environments. This chapter describes new ab initio modeling methodology using quantum mechanics to calculate equilibrium energetics, hydration, and thermodynamics to assess structural and electronic changes in the host mineral. Results suggest that barite group and aragonite mineral structures with orthorhombic symmetry, high coordination number, and large ionic radii have greater interstitial cell space and are therefore more favorable for PuO2+ incorporation than other host minerals. The contribution to existing incorporation methodology is the consideration of mineral surfaces. Findings from this study have substantial implications for the long-term sequestration of mobile actinide contaminants.
dc.language.isoen_US
dc.subjectgeochemistry
dc.subjectU60
dc.subjectelectrochemistry
dc.subjectactinide
dc.subjecturanium plutonium uranyl peroxide
dc.subjectmolecular modelling
dc.titleThe Electronic and Atomic Structure of Actinide Contaminants at the Mineral-Fluid Interface
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineEarth and Environmental Sciences
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.contributor.committeememberBecker, Udo
dc.contributor.committeememberEllis, Brian Robert
dc.contributor.committeememberCory, Rose
dc.contributor.committeememberHayes, Kim F
dc.contributor.committeememberSiegel, Donald Jason
dc.subject.hlbsecondlevelGeology and Earth Sciences
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbsecondlevelScience (General)
dc.subject.hlbtoplevelScience
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144048/1/bbge_1.pdf
dc.identifier.orcid0000-0002-9391-9950
dc.identifier.name-orcidGebarski, Benjamin; 0000-0002-9391-9950en_US
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.