Show simple item record

Including Kinetic Ion Effects in the Coupled Global Ionospheric Outflow Solution

dc.contributor.authorGlocer, A.
dc.contributor.authorToth, G.
dc.contributor.authorFok, M.‐c.
dc.date.accessioned2018-06-11T17:58:51Z
dc.date.available2019-05-13T14:45:24Zen
dc.date.issued2018-04
dc.identifier.citationGlocer, A.; Toth, G.; Fok, M.‐c. (2018). "Including Kinetic Ion Effects in the Coupled Global Ionospheric Outflow Solution." Journal of Geophysical Research: Space Physics 123(4): 2851-2871.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/144220
dc.description.abstractWe present a new expansion of the Polar Wind Outflow Model to include kinetic ions using the particleâ inâ cell (PIC) approach with Monte Carlo collisions. This implementation uses the original hydrodynamic solution at low altitudes for efficiency and couples to the kinetic solution at higher altitudes to account for kinetic effects important for ionospheric outflow. The modeling approach also includes waveâ particle interactions, suprathermal electrons, and a hybrid parallel computing approach combining shared and distributed memory paralellization. The resulting model is thus a comprehensive, global, model of ionospheric outflow that can be run efficiently on large supercomputing clusters. We demonstrate the model’s capability to study a range of problems starting with the comparison of kinetic and hydrodynamic solutions along a single field line in the sunlit polar cap, and progressing to the altitude evolution of the ion conic distribution in the cusp region. The interplay between convection and the cusp on the global outflow solution is also examined. Finally, we demonstrate the impact of these new model features on the magnetosphere by presenting the first twoâ way coupled ionospheric outflowâ magnetosphere calculation including kinetic ion effects.Key PointsWe present a global ionospheric outflow model with kinetic ions and waveâ particle interactionsThe code uses a hybrid parallelization scheme to achieve fast executionIt is the first twoâ way coupled global kinetic outflow code coupled to a multifluid MHD magnetosphere
dc.publisherJohn Wiley
dc.subject.othermagnetospheric composition
dc.subject.othermagnetosphere
dc.subject.othermodeling
dc.subject.otherionospheric outflow
dc.titleIncluding Kinetic Ion Effects in the Coupled Global Ionospheric Outflow Solution
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144220/1/jgra54182_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144220/2/jgra54182.pdf
dc.identifier.doi10.1002/2018JA025241
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceRetterer, J. M., Chang, T., Crew, G. B., Jasperse, J. R., & Winningham, J. D. ( 1987 ). Monte Carlo modeling of ionospheric oxygen acceleration by cyclotron resonance with broadâ band electromagnetic turbulence. Physical Review Letters, 59, 148 â 151. https://doi.org/10.1103/PhysRevLett.59.148
dc.identifier.citedreferenceNewell, P. T., & Meng, C.â I. ( 1987 ). Cusp width and Bz: Observations and a conceptual model. Journal of Geophysical Research, 92 ( A12 ), 13,673 â 13,678. https://doi.org/10.1029/JA092iA12p13673
dc.identifier.citedreferenceNewell, P. T., & Meng, C.â I. ( 1992 ). Mapping the dayside ionosphere to the magnetosphere according to particle precipitation characteristics. Geophysical Research Letters, 19, 609 â 612.
dc.identifier.citedreferenceNosé, M., Taguchi, S., Hosokawa, K., Christon, S. P., McEntire, R. W., Moore, T. E., & Collier, M. R. ( 2005 ). Overwhelming O + contribution to the plasma sheet energy density during the October 2003 superstorm: Geotail/EPIC and IMAGE/LENA observations. Journal of Geophysical Research, 110, A09S24. https://doi.org/10.1029/2004JA010930
dc.identifier.citedreferenceRidley, A., Gombosi, T., & Dezeeuw, D. ( 2004 ). Ionospheric control of the magnetosphere: Conductance. Annales Geophysicae, 22, 567 â 584.
dc.identifier.citedreferenceShay, M. A., & Swisdak, M. ( 2004 ). Threeâ species collisionless reconnection: Effect of O + on magnetotail reconnection. Physical Review Letters, 93 ( 17 ), 175001. https://doi.org/10.1103/PhysRevLett.93.175001
dc.identifier.citedreferenceSolomon, S. C. ( 2017 ). Global modeling of thermospheric airglow in the far ultraviolet. Journal of Geophysical Research: Space Physics, 122, 7834 â 7848. https://doi.org/10.1002/2017JA024314
dc.identifier.citedreferenceSolomon, S. C., Hays, P. B., & Abreu, V. J. ( 1988 ). The auroral 6300 Ã emission: Observations and modeling. Journal of Geophysical Research, 93 ( A9 ), 9867 â 9882. https://doi.org/10.1029/JA093iA09p09867
dc.identifier.citedreferenceStrangeway, R. J., Ergun, R. E., Su, Y.â J., Carlson, C. W., & Elphic, R. C. ( 2005 ). Factors controlling ionospheric outflows as observed at intermediate altitudes. Journal of Geophysical Research, 110, A03221. https://doi.org/10.1029/2004JA010829
dc.identifier.citedreferenceTakizuka, T., & Abe, H. ( 1977 ). A binary collision model for plasma simulation with a particle code. Journal of Computational Physics, 25 ( 3 ), 205 â 219. https://doi.org/10.1016/0021-9991(77)90099-7
dc.identifier.citedreferenceTóth, G., van der Holst, B., Sokolov, I. V., de Zeeuw, D. L., Gombosi, T. I., Fang, F., et al. ( 2012 ). Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 231, 870 â 903. https://doi.org/10.1016/j.jcp.2011.02.006
dc.identifier.citedreferenceVarney, R. H., Wiltberger, M., Zhang, B., Lotko, W., & Lyon, J. ( 2016 ). Influence of ion outflow in coupled geospace simulations: 1. Physicsâ based ion outflow model development and sensitivity study. Journal of Geophysical Research: Space Physics, 121, 9671 â 9687. https://doi.org/10.1002/2016JA022777
dc.identifier.citedreferenceWelling, D. T., Barakat, A. R., Eccles, J. V., Schunk, R. W., & Chappell, C. R. ( 2016 ). Coupling the generalized polar wind model to global magnetohydrodynamics (pp. 179 â 194 ). John Wiley. https://doi.org/10.1002/9781119066880.ch14
dc.identifier.citedreferenceWelling, D. T., Jordanova, V. K., Zaharia, S. G., Glocer, A., & Toth, G. ( 2011 ). The effects of dynamic ionospheric outflow on the ring current. Journal of Geophysical Research, 116, A00J19. https://doi.org/10.1029/2010JA015642
dc.identifier.citedreferenceWelling, D. T., & Liemohn, M. W. ( 2014 ). Outflow in global magnetohydrodynamics as a function of a passive inner boundary source. Journal of Geophysical Research: Space Physics, 119, 2691 â 2705. https://doi.org/10.1002/2013JA019374
dc.identifier.citedreferenceWiltberger, M., Lotko, W., Lyon, J. G., Damiano, P., & Merkin, V. ( 2010 ). Influence of cusp O + outflow on magnetotail dynamics in a multifluid mhd model of the magnetosphere. Journal of Geophysical Research, 115, a00J05. https://doi.org/10.1029/2010JA015579
dc.identifier.citedreferenceWinglee, R. M. ( 1998 ). Multiâ fluid simulations of the magnetosphere: The identification of the geopause and its variation with IMF. Geophysical Research Letters, 25, 4441 â 4444.
dc.identifier.citedreferenceYau, A. W., Abe, T., & Peterson, W. K. ( 2007 ). The polar wind: Recent observations. Journal of Atmospheric and Solarâ Terrestrial Physics, 69, 1936 â 1983. https://doi.org/10.1016/j.jastp.2007.08.010
dc.identifier.citedreferenceZeng, W., & Horwitz, J. L. ( 2007 ). Formula representation of auroral ionospheric o+ outflows based on systematic simulations with effects of soft electron precipitation and transverse ion heating. Geophysical Research Letters, 34, L06103. https://doi.org/10.1029/2006GL028632
dc.identifier.citedreferenceZheng, Y., Moore, T. E., Mozer, F. S., Russell, C. T., & Strangeway, R. J. ( 2005 ). Polar study of ionospheric ion outflow versus energy input. Journal of Geophysical Research, 110, A07210. https://doi.org/10.1029/2004JA010995
dc.identifier.citedreferenceAbe, T., Whalen, B. A., Yau, A. W., Watanabe, S., Sagawa, E., & Oyama, K. I. ( 1993 ). Altitude profile of the polar wind velocity and its relationship to ionospheric conditions. Geophysical Research Letters, 20, 2825 â 2828. https://doi.org/10.1029/93GL02837
dc.identifier.citedreferenceAxford, W. I. ( 1968 ). The polar wind and the terrestrial helium budget. Journal of Geophysical Research, 73 ( 21 ), 6855 â 6859.
dc.identifier.citedreferenceBanks, P. M., & Holzer, T. E. ( 1968 ). The polar wind. Journal of Geophysical Research, 73, 6846 â 6854. https://doi.org/10.1029/JA073i021p06846
dc.identifier.citedreferenceBanks, P. M., & Nagy, A. F. ( 1970 ). Concerning the influence of elastic scattering upon photoelectron transport and escape. Journal of Geophysical Research, 75, 1902 â 1910. https://doi.org/10.1029/JA075i010p01902
dc.identifier.citedreferenceBarakat, A. R., & Barghouthi, I. A. ( 1994 ). The effect of waveâ particle interactions on the polar winds O(+). Geophysical Research Letters, 21, 2279 â 2282.
dc.identifier.citedreferenceBarakat, A. R., Barghouthi, I. A., & Schunk, R. W. ( 1995 ). Doubleâ hump H + velocity distribution in the polar wind. Geophysical Research Letters, 22, 1857 â 1860. https://doi.org/10.1029/95GL01519
dc.identifier.citedreferenceBarakat, A. R., & Schunk, R. W. ( 2006 ). A threeâ dimensional model of the generalized polar wind. Journal of Geophysical Research, 111, A12314. https://doi.org/10.1029/2006JA011662
dc.identifier.citedreferenceBarakat, A. R., & Schunk, R. W. ( 1983 ). O(+) ions in the polar wind. Journal of Geophysical Research, 88, 7887 â 7894. https://doi.org/10.1029/JA088iA10p07887
dc.identifier.citedreferenceBilitza, D., Rawer, K., Bossy, L., Kutiev, I., Oyama, K.â I., Leitinger, R., & Kazimirovsky, E ( 1990 ). International Reference Ionosphere 1990 (Report/Patent Number: NASA-TM-105055, NAS 1.15:105055, NSSDC/WDC-A-R/S-90-22). Retrieved from https://ntrs.nasa.gov/search.jsp?N=0&DocumentID=19910021307
dc.identifier.citedreferenceBrambles, O. J., Lotko, W., Zhang, B., Wiltberger, M., Lyon, J., & Strangeway, R. J. ( 2011 ). Magnetosphere sawtooth oscillations induced by ionospheric outflow. Science, 332 ( 6034 ), 1183 â 1186.
dc.identifier.citedreferenceChappell, C. R., Moore, T. E., & Waite, J. H. ( 1987 ). The ionosphere as a fully adequate source of plasma for the Earth’s magnetosphere. Journal of Geophysical Research, 92, 5896 â 5910.
dc.identifier.citedreferenceCrew, G. B., Chang, T., Retterer, J. M., Peterson, W. K., & Gurnett, D. A. ( 1990 ). Ion cyclotron resonance heated conics: Theory and observations. Journal of Geophysical Research, 95, 3959 â 3985.
dc.identifier.citedreferenceDemars, H. G., Barakat, A. R., & Schunk, R. W. ( 1996 ). Effect of centrifugal acceleration on the polar wind. Journal of Geophysical Research, 101 ( A11 ), 24,565 â 24,571. https://doi.org/10.1029/96JA02234
dc.identifier.citedreferenceDeng, Y., Fullerâ Rowell, T. J., Ridley, A. J., Knipp, D., & Lopez, R. E. ( 2013 ). Theoretical study: Influence of different energy sources on the cusp neutral density enhancement. Journal of Geophysical Research: Space Physics, 118, 2340 â 2349. https://doi.org/10.1002/jgra.50197
dc.identifier.citedreferenceDessler, A. J., & Cloutier, P. A. ( 1969 ). Discussion of letter by Peter M. Banks and Thomas E. Holzer, â The polar windâ . Journal of Geophysical Research, 74 ( 14 ), 3730 â 3733. https://doi.org/10.1029/JA074i014p03730
dc.identifier.citedreferenceDonahue, T. M. ( 1971 ). Polar ion flow: Wind or breeze? Reviews of Geophysics, 9 ( 1 ), 1 â 9. https://doi.org/10.1029/RG009i001p00001
dc.identifier.citedreferenceEstep, G. M., Horwitz, J. L., Su, Y.â J., Richards, P. G., Wilson, G. R., & Brown, D. G. ( 1999 ). A Dynamic Fluidâ Kinetic (DyFK) model for ionosphereâ magnetosphere plasma transport: Effects of ionization and thermal electron heating by soft electron precipitation. Terrestrial, Atmospheric and Oceanic Sciences, 10 ( 3 ), 491 â 510.
dc.identifier.citedreferenceFok, M.â C., Buzulukova, N. Y., Chen, S.â H., Glocer, A., Nagai, T., Valek, P., & Perez, J. D. ( 2014 ). The comprehensive inner magnetosphereâ ionosphere model. Journal of Geophysical Research: Space Physics, 119, 7522 â 7540. https://doi.org/10.1002/2014JA020239
dc.identifier.citedreferenceFok, M.â C., Moore, T. E., Brandt, P. C., Delcourt, D. C., Slinker, S. P., & Fedder, J. A. ( 2006 ). Impulsive enhancements of oxygen ions during substorms. Journal of Geophysical Research, 111, A10222. https://doi.org/10.1029/2006JA011839
dc.identifier.citedreferenceGarcia, K. S., Merkin, V. G., & Hughes, W. J. ( 2010 ). Effects of nightside O + outflow on magnetospheric dynamics: Results of multifluid MHD modeling. Journal of Geophysical Research, 115, A00J09. https://doi.org/10.1029/2010JA015730
dc.identifier.citedreferenceGlocer, A., Fok, M., Meng, X., Toth, G., Buzulukova, N., Chen, S., & Lin, K. ( 2013 ). CRCM + BATSâ Râ US twoâ way coupling. Journal of Geophysical Research: Space Physics, 118, 1635 â 1650. https://doi.org/10.1002/jgra.50221
dc.identifier.citedreferenceGlocer, A., Gombosi, T. I., Toth, G., Hansen, K. C., Ridley, A. J., & Nagy, A. ( 2007 ). Polar Wind Outflow Model: Saturn results. Journal of Geophysical Research, 112, A01304. https://doi.org/10.1029/2006JA011755
dc.identifier.citedreferenceGlocer, A., Khazanov, G., & Liemohn, M. ( 2017 ). Photoelectrons in the quiet polar wind. Journal of Geophysical Research: Space Physics, 122, 6708 â 6726. https://doi.org/10.1002/2017JA024177
dc.identifier.citedreferenceGlocer, A., Kitamura, N., Toth, G., & Gombosi, T. ( 2012 ). Modeling solar zenith angle effects on the polar wind. Journal of Geophysical Research, 117, A04318. https://doi.org/10.1029/2011JA017136
dc.identifier.citedreferenceGlocer, A., Toth, G., Fok, M., Gombosi, T., & Liemohn, M. ( 2009 ). Integration of the radiation belt environment model into the space weather modeling framework. Journal of Atmospheric and Solarâ Terrestrial Physics, 71, 1653 â 1663. https://doi.org/10.1016/j.jastp.2009.01.003
dc.identifier.citedreferenceGlocer, A., Toth, G., Gombosi, T., & Welling, D. ( 2009 ). Modeling ionospheric outflows and their impact on the magnetosphere, initial results. Journal of Geophysical Research, 114, A05216. https://doi.org/10.1029/2009JA014053
dc.identifier.citedreferenceGlocer, A., Tóth, G., Ma, Y., Gombosi, T., Zhang, J.â C., & Kistler, L. M. ( 2009 ). Multifluid Blockâ Adaptiveâ Tree Solar wind Roeâ type Upwind Scheme: Magnetospheric composition and dynamics during geomagnetic stormsâ Initial results. Journal of Geophysical Research, 114, A12203. https://doi.org/10.1029/2009JA014418
dc.identifier.citedreferenceGombosi, T. I., & Nagy, A. ( 1989 ). Timeâ dependent modeling of field aligned currentâ generated ion transients in the polar wind. Journal of Geophysical Research, 94, 359 â 369.
dc.identifier.citedreferenceGurnett, D. A., Huff, R. L., Menietti, J. D., Burch, J. L., Winningham, J. D., & Shawhan, S. D. ( 1984 ). Correlated lowâ frequency electric and magnetic noise along the auroral field lines. Journal of Geophysical Research, 89 ( A10 ), 8971 â 8985. https://doi.org/10.1029/JA089iA10p08971
dc.identifier.citedreferenceHolzer, T. E., Fedder, J. A., & Banks, P. M. ( 1971 ). A comparison of kinetic and hydrodynamic models of an expanding ionâ exosphere. Journal of Geophysical Research, 76 ( 10 ), 2453 â 2468. https://doi.org/10.1029/JA076i010p02453
dc.identifier.citedreferenceIlie, R., Skoug, R. M., Valek, P., Funsten, H. O., & Glocer, A. ( 2013 ). Global view of inner magnetosphere composition during storm time. Journal of Geophysical Research: Space Physics, 118, 7074 â 7084. https://doi.org/10.1002/2012JA018468
dc.identifier.citedreferenceKhazanov, G. V., Liemohn, M. W., & Moore, T. E. ( 1997 ). Photoelectron effects on the selfâ consistent potential in the collisionless polar wind. Journal of Geophysical Research, 102, 7509 â 7522. https://doi.org/10.1029/96JA03343
dc.identifier.citedreferenceKozyra, J. U., Cravens, T. E., Nagy, A. F., Fontheim, E. G., & Ong, R. S. B. ( 1984 ). Effects of energetic heavy ions on electromagnetic ion cyclotron wave generation in the plasmapause region. Journal of Geophysical Research, 89, 2217 â 2233. https://doi.org/10.1029/JA089iA04p02217
dc.identifier.citedreferenceLapenta, G. ( 2002 ). Particle rezoning for multidimensional kinetic particleâ inâ cell simulations. Journal of Computational Physics, 181 ( 1 ), 317 â 337. https://doi.org/10.1006/jcph.2002.7126
dc.identifier.citedreferenceLemaire, J., & Scherer, M. ( 1970 ). Model of the polar ionâ exosphere. Planetary and Space Science, 18 ( 1 ), 103 â 120. https://doi.org/10.1016/0032-0633(70)90070-X
dc.identifier.citedreferenceLemaire, J., & Scherer, M. ( 1973 ). Kinetic models of the solar and polar winds. Reviews of Geophysics, 11 ( 2 ), 427 â 468. https://doi.org/10.1029/RG011i002p00427
dc.identifier.citedreferenceLennartsson, W., Sharp, R. D., Shelley, E. G., Johnson, R. G., & Balsiger, H. ( 1981 ). Ion composition and energy distribution during 10 magnetic storms. Journal of Geophysical Research, 86, 4628 â 4638. https://doi.org/10.1029/JA086iA06p04628
dc.identifier.citedreferenceLockwood, M., Waite, J. H., Moore, T. E., Johnson, J. F. E., & Chappell, C. R. ( 1985 ). A new source of suprathermal o+ ions near the dayside polar cap boundary. Journal of Geophysical Research, 90 ( A5 ), 4099 â 4116. https://doi.org/10.1029/JA090iA05p04099
dc.identifier.citedreferenceMarubashi, K. ( 1970 ). Escape of the polarâ ionospheric plasma into the magnetospheric tail (Tech. Rep.). Tokyo University.
dc.identifier.citedreferenceMiller, R. H., & Combi, M. R. ( 1994 ). A Coulomb collision algorithm for weighted particle simulations. Geophysical Research Letters, 21, 1735 â 1738.
dc.identifier.citedreferenceNagy, A. F., & Banks, P. M. ( 1970 ). Photoelectron fluxes in the ionosphere. Journal of Geophysical Research, 75, 6260 â 6270.
dc.identifier.citedreferenceNanbu, K., & Yonemura, S. ( 1998 ). Weighted particles in Coulomb collision simulations based on the theory of a cumulative scattering angle. Journal of Computational Physics, 145 ( 2 ), 639 â 654. https://doi.org/10.1006/jcph.1998.6049
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.