Show simple item record

Interactions between sunlight and microorganisms influence dissolved organic matter degradation along the aquatic continuum

dc.contributor.authorCory, Rose M.
dc.contributor.authorKling, George W.
dc.date.accessioned2018-06-11T17:59:00Z
dc.date.available2019-08-01T19:53:22Zen
dc.date.issued2018-06
dc.identifier.citationCory, Rose M.; Kling, George W. (2018). "Interactions between sunlight and microorganisms influence dissolved organic matter degradation along the aquatic continuum." Limnology and Oceanography Letters 3(3): 102-116.
dc.identifier.issn2378-2242
dc.identifier.issn2378-2242
dc.identifier.urihttps://hdl.handle.net/2027.42/144226
dc.description.abstractCO2 emissions from inland surface waters to the atmosphere are almost as large as the net carbon transfer from the atmosphere to Earth’s land surface. This large flux is supported by dissolved organic matter (DOM) from land and its complete oxidation to CO2 in freshwaters. A critical nexus in the global carbon cycle is the fate of DOM, either complete or partial oxidation. Interactions between sunlight and microbes control DOM degradation, but the relative importance of photodegradation vs. degradation by microbes is poorly known. The knowledge gaps required to advance understanding of key interactions between photochemistry and biology influencing DOM degradation include: (1) the efficiencies and products of DOM photodegradation, (2) how do photo‐products control microbial metabolism of photo‐altered DOM and on what time scales, and (3) how do water and DOM residence times and light exposure interact to determine the fate of DOM moving across the landscape to oceans?
dc.publisherElsevier
dc.publisherWiley Periodicals, Inc.
dc.titleInteractions between sunlight and microorganisms influence dissolved organic matter degradation along the aquatic continuum
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144226/1/lol210060_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144226/2/lol210060.pdf
dc.identifier.doi10.1002/lol2.10060
dc.identifier.sourceLimnology and Oceanography Letters
dc.identifier.citedreferenceSatinsky, B. M., and others. 2014. Microspatial gene expression patterns in the Amazon River Plume. Proc. Natl. Acad. Sci. USA 111: 11085 – 11090. doi: 10.1073/pnas.1402782111
dc.identifier.citedreferenceWaggoner, D. C., H. Chen, A. S. Willoughby, and P. G. Hatcher. 2015. Formation of black carbon‐like and alicyclic aliphatic compounds by hydroxyl radical initiated degradation of lignin. Org. Geochem. 82: 69 – 76. doi: 10.1016/j.orggeochem.2015.02.007
dc.identifier.citedreferenceWaggoner, D. C., A. S. Wozniak, R. M. Cory, and P. G. Hatcher. 2017. The role of reactive oxygen species in the degradation of lignin derived dissolved organic matter. Geochim. Cosmochim. Acta 208: 171 – 184. doi: 10.1016/j.gca.2017.03.036
dc.identifier.citedreferenceWard, C. P., R. L. Sleighter, P. G. Hatcher, and R. M. Cory. 2014. Insights into the complete and partial photooxidation of black carbon in surface waters. Environ. Sci. Process. Impacts 16: 721 – 731. doi: 10.1039/c3em00597f
dc.identifier.citedreferenceWard, C. P., and R. M. Cory. 2016. Complete and partial photo‐oxidation of dissolved organic matter draining permafrost soils. Environ. Sci. Technol. 50: 3545 – 3553. doi: 10.1021/acs.est.5b05354
dc.identifier.citedreferenceWard, C. P., S. G. Nalven, B. C. Crump, G. W. Kling, and R. M. Cory. 2017. Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration. Nat. Commun. 8: 1 – 8. doi: 10.1038/s41467-017-00759-2
dc.identifier.citedreferenceWard, N. D., and others. 2013. Degradation of terrestrially derived macromolecules in the Amazon River. Nat. Geosci. 6: 530 – 533. doi: 10.1038/ngeo1817
dc.identifier.citedreferenceWesterhoff, P., G. Aiken, G. Amy, and J. Debroux. 1999. Relationships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals. Water Res. 33: 2265 – 2276. doi: 10.1016/S0043-1354(98)00447-3
dc.identifier.citedreferenceWetzel, R., P. Hatcher, and T. Bianchi. 1995. Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnol. Oceanogr. 40: 1369 – 1380. doi: 10.4319/lo.1995.40.8.1369
dc.identifier.citedreferenceWetzel, R. G. 2001. Limnology: Lake and river ecosystems, 3rd ed. Academic Press.
dc.identifier.citedreferenceWhite, E. M., P. P. Vaughan, and R. G. Zepp. 2003. Role of the photo‐Fenton reaction in the production of hydroxyl radicals and photobleaching of colored dissolved organic matter in a coastal river of the southeastern United States. Aquat. Sci. 65: 402 – 414. doi: 10.1007/s00027-003-0675-4
dc.identifier.citedreferenceWhite, E. M., D. J. Kieber, J. Sherrard, W. L. Miller, and K. Mopper. 2010. Carbon dioxide and carbon monoxide photoproduction quantum yields in the Delaware Estuary. Mar. Chem. 118: 11 – 21. doi: 10.1016/j.marchem.2009.10.001
dc.identifier.citedreferenceWiegner, T. N., L. A. Kaplan, J. D. Newbold, P. H. Ostrom, and P. E. H. O. Strom. 2005. Contribution of dissolved organic C to stream metabolism: A mesocosm study using 13 C‐enriched tree‐tissue leachate. J. N. Am. Benthol. Soc. 24: 48 – 67. doi: 10.1899/0887-3593(2005)024<0048:CODOCT>2.0.CO;2
dc.identifier.citedreferenceWilliamson, C. E., R. S. Stemberger, D. P. Morris, T. A. Frost, and S. G. Paulsen. 1996. Ultraviolet radiation in North American lakes: Attenuation estimates from DOC measurements and implications for plankton communities. Limnol. Oceanogr. 41: 1024 – 1034. doi: 10.4319/lo.1996.41.5.1024
dc.identifier.citedreferenceWilliamson, C. E., J. A. Brentrup, J. Zhang, W. H. Renwick, B. R. Hargreaves, L. B. Knoll, E. P. Overholt, and K. C. Rose. 2014. Lakes as sensors in the landscape: Optical metrics as scalable sentinel responses to climate change. Limnol. Oceanogr. 59: 840 – 850. doi: 10.4319/lo.2014.59.3.0840
dc.identifier.citedreferenceWilliamson, C. E., E. P. Overholt, R. M. Pilla, T. H. Leach, J. A. Brentrup, L. B. Knoll, E. M. Mette, and R. E. Moeller. 2015. Ecological consequences of long‐term browning in lakes. Sci. Rep. 5: 18666. doi: 10.1038/srep18666
dc.identifier.citedreferenceXie, H., O. C. Zafiriou, W.‐J. Cai, R. G. Zepp, and Y. Wang. 2004. Photooxidation and its effects on the carboxyl content of dissolved organic matter in two coastal rivers in the southeastern United States. Environ. Sci. Technol. 38: 4113 – 4119. doi: 10.1021/es035407t
dc.identifier.citedreferenceCory, R. M., K. McNeill, J. P. Cotner, A. Amado, J. M. Purcell, and A. G. Marshall. 2010. Singlet oxygen in the coupled photochemical and biochemical oxidation of dissolved organic matter. Environ. Sci. Technol. 44: 3683 – 3689. doi: 10.1021/es902989y
dc.identifier.citedreferenceAbdulla, H. A. N., E. C. Minor, R. F. Dias, and P. G. Hatcher. 2010. Changes in the compound classes of dissolved organic matter along an estuarine transect: A study using FTIR and 13C NMR. Geochim. Cosmochim. Acta 74: 3815 – 3838. doi: 10.1016/j.gca.2010.04.006
dc.identifier.citedreferenceAdams, H. E., B. C. Crump, and G. W. Kling. 2014. Metacommunity dynamics of bacteria in an Arctic lake: The impact of species sorting and mass effects on bacterial production and biogeography. Front. Microbiol. 5: 82. doi: 10.3389/fmicb.2014.00082
dc.identifier.citedreferenceAdams, H. E., B. C. Crump, and G. W. Kling. 2015. Isolating the effects of storm events on Arctic aquatic bacteria: Temperature, nutrients, and community composition as controls on bacterial productivity. Front. Microbiol. 6: 250. doi: 10.3389/fmicb.2015.00250
dc.identifier.citedreferenceAllesson, L., L. Ström, M. Berggren, L. Strom, and M. Berggren. 2016. Impact of photochemical processing of DOC on the bacterioplankton respiratory quotient in aquatic ecosystems. Geophys. Res. Lett. 43: 7538 – 7545. doi: 10.1002/2016GL069621
dc.identifier.citedreferenceAmado, A. M., J. B. Cotner, A. L. Suhett, F. D. A. Esteves, R. L. Bozelli, and V. F. Farjalla. 2007. Contrasting interactions mediate dissolved organic matter decomposition in tropical aquatic ecosystems. Aquat. Microb. Ecol. 49: 25 – 34. doi: 10.3354/ame01131
dc.identifier.citedreferenceAmon, R. M., and R. Benner. 1996. Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system. Geochim. Cosmochim. Acta 60: 1783 – 1792. doi: 10.1016/0016-7037(96)00055-5
dc.identifier.citedreferenceAndrews, S. S., S. Caron, and O. Zafiriou. 2000. Photochemical oxygen consumption in marine waters: A major sink for colored dissolved organic matter? Limnol. Oceanogr. 45: 267 – 277. doi: 10.4319/lo.2000.45.2.0267
dc.identifier.citedreferenceBernhard, G. 2011. Trends of solar ultraviolet irradiance at Barrow, Alaska, and the effect of measurement uncertainties on trend detection. Atmos. Chem. Phys. 11: 13029 – 13045. doi: 10.5194/acp-11-13029-2011
dc.identifier.citedreferenceBertilsson, S., and L. J. Tranvik. 1998. Photochemically produced carboxylic acids as substrates for freshwater bacterioplankton. Limnol. Oceanogr. 43: 885 – 895. doi: 10.4319/lo.1998.43.5.0885
dc.identifier.citedreferenceBiddanda, B. A. 2017. Global significance of the changing freshwater carbon cycle. Eos 98: 15 – 17. doi: 10.1029/2017EO069751
dc.identifier.citedreferenceBrown, A., D. M. McKnight, Y. P. Chin, E. C. Roberts, and M. Uhle. 2004. Chemical characterization of dissolved organic material in Pony Lake, a saline coastal pond in Antarctica. Mar. Chem. 89: 327 – 337. doi: 10.1016/j.marchem.2004.02.016
dc.identifier.citedreferenceBuchan, A., L. S. Collier, E. L. Neidle, A. Buchan, L. S. Collier, and E. L. Neidle. 2000. Key aromatic‐ring‐cleaving enzyme, ecologically important marine Roseobacter lineage. Appl. Environ. Microbiol. 66: 4662 – 4672. doi: 10.1128/AEM.66.11.4662-4672.2000
dc.identifier.citedreferenceBurdige, D. J. 2007. Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem. Rev. 107: 467 – 485. doi: 10.1021/cr050347q
dc.identifier.citedreferenceCatalán, N., R. Marcé, D. N. Kothawala, and L. J. Tranvik. 2016. Organic carbon decomposition rates controlled by water retention time across inland waters. Nat. Geosci. 9: 501 – 504. doi: 10.1038/ngeo2720
dc.identifier.citedreferenceCatalán, N., J. P. Casas‐Ruiz, D. von Schiller, L. Proia, B. Obrador, E. Zwirnmann, and R. Marcé. 2017. Biodegradation kinetics of dissolved organic matter chromatographic fractions in an intermittent river. J. Geophys. Res. Biogeosci. 122: 131 – 144. doi: 10.1002/2016JG003512
dc.identifier.citedreferenceCole, J. J., N. F. Caraco, G. W. Kling, and T. K. Kratz. 1994. Carbon dioxide supersaturation in the surface waters of lakes. Science 265: 1568 – 1570. doi: 10.1126/science.265.5178.1568
dc.identifier.citedreferenceCory, R. M. 2017. Kuparuk River photo‐bio apparent quantum yield, Alaska, 2011–2012. Arctic Data Center, [accessed 2018 January 04]. Available from https://doi.org/10.18739/a2sv8z.
dc.identifier.citedreferenceCory, R. M., D. M. McKnight, Y. P. Chin, P. Miller, and C. L. Jaros. 2007. Chemical characteristics of fulvic acids from Arctic surface waters: Microbial contributions and photochemical transformations. J. Geophys. Res. Biogeosci. 112: 1 – 14. doi: 10.1029/2006JG000343
dc.identifier.citedreferenceCory, R. M., J. B. Cotner, and K. McNeill. 2009. Quantifying interactions between singlet oxygen and aquatic fulvic acids. Environ. Sci. Technol. 43: 718 – 723. doi: 10.1021/es801847g
dc.identifier.citedreferenceCory, R. M., and L. A. Kaplan. 2012. Biological lability of streamwater fluorescent dissolved organic matter. Limnol. Oceanogr. 57: 1347 – 1360. doi: 10.4319/lo.2012.57.5.1347
dc.identifier.citedreferenceCory, R. M., B. C. Crump, J. A. Dobkowski, and G. W. Kling. 2013. Surface exposure to sunlight stimulates CO 2 release from permafrost soil carbon in the Arctic. Proc. Natl. Acad. Sci. USA 110: 3429 – 3434. doi: 10.1073/pnas.1214104110
dc.identifier.citedreferenceCory, R. M., C. P. Ward, B. C. Crump, and G. W. Kling. 2014. Sunlight controls water column processing of carbon in Arctic fresh waters. Science 345: 925 – 928. doi: 10.1126/science.1253119
dc.identifier.citedreferenceCory, R. M., K. H. Harrold, B. T. Neilson, and G. W. Kling. 2015. Controls on dissolved organic matter (DOM) degradation in a headwater stream: The influence of photochemical and hydrological conditions in determining light‐limitation or substrate‐limitation of photo‐degradation. Biogeosciences 12: 6669 – 6685. doi: 10.5194/bg-12-6669-2015
dc.identifier.citedreferenceCotner, J. J. B., and R. R. T. Heath. 1990. Iron redox effects on photosensitive phosphorus release from dissolved humic materials. Limnol. Oceanogr. 35: 1175 – 1181. doi: 10.4319/lo.1990.35.5.1175
dc.identifier.citedreferenceCreed, I. F., and others. 2015. The river as a chemostat: Fresh perspectives on dissolved organic matter flowing down the river continuum. Can. J. Fish. Aquat. Sci. 14: 1 – 14. doi: 10.1139/cjfas-2014-0400
dc.identifier.citedreferenceCrump, B. C., G. W. Kling, M. Bahr, and J. E. Hobbie. 2003. Bacterioplankton community shifts in an Arctic lake correlate with seasonal changes in organic matter source. Appl. Environ. Microbiol. 69: 2253 – 2268. doi: 10.1128/AEM.69.4.2253
dc.identifier.citedreferenceCrump, B. C., B. J. Peterson, P. A. Raymond, R. M. W. Amon, A. Rinehart, J. W. McClelland, and R. M. Holmes. 2009. Circumpolar synchrony in big river bacterioplankton. Proc. Natl. Acad. Sci. USA 106: 21208 – 21212. doi: 10.1073/pnas.0906149106
dc.identifier.citedreferenceDalzell, B. J., E. C. Minor, and K. M. Mopper. 2009. Photodegradation of estuarine dissolved organic matter: A multi‐method assessment of DOM transformation. Org. Geochem. 40: 243 – 257. doi: 10.1016/j.orggeochem.2008.10.003
dc.identifier.citedreferenceFasching, C., and T. J. Battin. 2012. Exposure of dissolved organic matter to UV‐radiation increases bacterial growth efficiency in a clear‐water Alpine stream and its adjacent groundwater. Aquat. Sci. 74: 143 – 153. doi: 10.1007/s00027-011-0205-8
dc.identifier.citedreferenceFasching, C., B. Behounek, G. A. Singer, and T. J. Battin. 2014. Microbial degradation of terrigenous dissolved organic matter and potential consequences for carbon cycling in brown‐water streams. Sci. Rep. 4: 4981. doi: 10.1038/srep04981
dc.identifier.citedreferenceFaust, B. C., and R. G. Zepp. 1993. Photochemistry of aqueous iron(III)‐polcarboxylate complexes: Roles in the chemistry of atmospheric and surface waters. Environ. Sci. Technol. 27: 2517 – 2522. doi: 10.1021/es00048a032
dc.identifier.citedreferenceFellman, J. B., E. Hood, D. V. D’Amore, R. T. Edwards, and D. White. 2009. Seasonal changes in the chemical quality and biodegradability of dissolved organic matter exported from soils to streams in coastal temperate rainforest watersheds. Biogeochemistry 95: 277 – 293. doi: 10.1007/s10533-009-9336-6
dc.identifier.citedreferenceGao, H., and R. G. Zepp. 1998. Factors influencing photoreactions of dissolved organic matter in a coastal river of the southeastern United States. Environ. Sci. Technol. 32: 2940 – 2946. doi: 10.1021/es9803660
dc.identifier.citedreferenceGoldberg, S. J., and others. 2015. Refractory dissolved organic nitrogen accumulation in high‐elevation lakes. Nat. Commun. 6: 6347. doi: 10.1038/ncomms7347
dc.identifier.citedreferenceGoldstone, J. V., M. J. Pullin, S. Bertilsson, and B. M. Voelker. 2002. Reactions of hydroxyl radical with humic substances: Bleaching, mineralization, and production of bioavailable carbon substrates. Environ. Sci. Technol. 36: 364 – 372. doi: 10.1021/es0109646
dc.identifier.citedreferenceGonsior, M., B. M. Peake, W. T. Cooper, D. Podgorski, J. D’Andrilli, and W. J. Cooper. 2009. Photochemically induced changes in dissolved organic matter identified by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry. Environ. Sci. Technol. 43: 698 – 703. doi: 10.1021/es8022804
dc.identifier.citedreferenceGraneli, W., M. Lindell, and L. J. Tranvik. 1996. Photo‐oxidative production of dissolved inorganic carbon in lakes of different humic content. Limnol. Oceanogr. 41: 698 – 706. doi: 10.4319/lo.1996.41.4.0698
dc.identifier.citedreferenceGuillemette, F., and P. A. del Giorgio. 2011. Reconstructing the various facets of dissolved organic carbon bioavailability in freshwater ecosystems. Limnol. Oceanogr. 56: 734 – 748. doi: 10.4319/lo.2011.56.2.0734
dc.identifier.citedreferenceGuillemette, F., and P. A. del Giorgio. 2012. Simultaneous consumption and production of fluorescent dissolved organic matter by lake bacterioplankton. Environ. Microbiol. 14: 1432 – 1443. doi: 10.1111/j.1462-2920.2012.02728.x
dc.identifier.citedreferenceHernes, P. J., and R. Benner. 2003. Photochemical and microbial degradation of dissolved lignin phenols: Implications for the fate of terrigenous dissolved organic matter in marine environments. J. Geophys. Res. 108: 3291. doi: 10.1029/2002JC001421
dc.identifier.citedreferenceHong, J., H. Xie, L. Guo, and G. Song. 2014. Carbon monoxide photoproduction: Implications for photoreactivity of Arctic permafrost‐derived soil dissolved organic matter. Environ. Sci. Technol. 48: 9113 – 9121. doi: 10.1021/es502057n
dc.identifier.citedreferenceJohannessen, S. C., and W. L. Miller. 2001. Quantum yield for the photochemical production of dissolved inorganic carbon in seawater. Mar. Chem. 76: 271 – 283. doi: 10.1016/S0304-4203(01)00067-6
dc.identifier.citedreferenceJudd, K., B. Crump, and G. Kling. 2007. Bacterial responses in activity and community composition to photo‐oxidation of dissolved organic matter from soil and surface waters. Aquat. Sci. 69: 96 – 107. doi: 10.1007/s00027-006-0908-4
dc.identifier.citedreferenceJudd, K. E., B. C. Crump, and G. W. Kling. 2006. Variation in dissolved organic matter controls bacterial production and community composition. Ecology 87: 2068 – 2079. doi:10.1890/0012–9658(2006)87[2068:VIDOMC]2.0.CO;2]
dc.identifier.citedreferenceKaiser, E., and B. Sulzberger. 2004. Phototransformation of riverine dissolved organic matter (DOM) in the presence of abundant iron: Effect on DOM bioavailability. Limnol. Oceanogr. 49: 540 – 554. doi: 10.4319/lo.2004.49.2.0540
dc.identifier.citedreferenceKaplan, L. A., and R. M. Cory. 2016. Dissolved organic matter in stream ecosystems, p. 241 – 320. In J. B. Jones and E. H. Stanley [eds.], Stream ecosystems in a changing environment. Elsevier.
dc.identifier.citedreferenceKellerman, A. M., D. N. Kothawala, T. Dittmar, and L. J. Tranvik. 2015. Persistence of dissolved organic matter in lakes related to its molecular characteristics. Nat. Geosci. 8: 454 – 457. doi: 10.1038/ngeo2440
dc.identifier.citedreferenceKling, G. W., G. W. Kipphut, and M. C. Miller. 1991. Lakes and streams for tundra carbon budgets atmosphere: Implications. Science 251: 298 – 301. doi: 10.1126/science.251.4991.298
dc.identifier.citedreferenceKling, G. W., G. W. Kipphut, M. M. Miller, W. J. O’Brien. 2000. Integration of lakes and streams in a landscape perspective: The importance of material processing on spatial patterns and temporal coherence. Freshw. Biol. 43: 477 – 497. doi: 10.1046/j.1365-2427.2000.00515.x
dc.identifier.citedreferenceKoehler, B., T. Landelius, G. A. Weyhenmeyer, N. Machida, and L. J. Tranvik. 2014. Sunlight‐induced carbon dioxide emissions from inland waters. Global Biogeochem. Cycles 28: 696 – 711. doi: 10.1002/2014GB004850
dc.identifier.citedreferenceKothawala, D. N., C. A. Stedmon, R. A. Müller, G. A. Weyhenmeyer, S. J. Köhler, and L. J. Tranvik. 2014. Controls of dissolved organic matter quality: Evidence from a large‐scale boreal lake survey. Glob. Chang. Biol. 20: 1101 – 1114. doi: 10.1111/gcb.12488
dc.identifier.citedreferenceLapierre, J.‐F., F. Guillemette, M. Berggren, and P. A. del Giorgio. 2013. Increases in terrestrially derived carbon stimulate organic carbon processing and CO 2 emissions in boreal aquatic ecosystems. Nat. Commun. 4: 1 – 7. doi: 10.1038/ncomms3972
dc.identifier.citedreferenceLam, B., A. Baer, M. Alaee, B. Lefebvre, A. Moser, A. Williams, and A. J. Simpson. 2007. Major structural components in freshwater dissolved organic matter. Environ. Sci. Technol. 41: 8240 – 8247. doi: 10.1021/es0713072
dc.identifier.citedreferenceLarson, J. H., P. C. Frost, Z. Zheng, C. A. Johnston, S. D. Bridgham, D. M. Lodge, and G. A. Lamberti. 2007. Effects of upstream lakes on dissolved organic matter in streams. Limnol. Oceanogr. 52: 60 – 69. doi: 10.4319/lo.2007.52.1.0060
dc.identifier.citedreferenceLatch, D. E., and K. McNeill. 2006. Microheterogeneity of singlet oxygen distributions in irradiated humic acid solutions. Science 311: 1743 – 1747. doi: 10.1126/science.1121636
dc.identifier.citedreferenceLeifer, A. 1988. The kinetics of environmental aquatic photochemistry. American Chemical Society.
dc.identifier.citedreferenceLindell, M. J., H. W. Granéli, and S. Bertilsson. 2000. Seasonal photoreactivity of dissolved organic matter from lakes with contrasting humic content. Can. J. Fish. Aquat. Sci. 57: 875 – 885. doi: 10.1139/f00-016
dc.identifier.citedreferenceLogue, J. B., C. A. Stedmon, A. M. Kellerman, N. J. Nielsen, A. F. Andersson, H. Laudon, E. S. Lindström, and E. S. Kritzberg. 2015. Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. ISME J. 10: 533 – 545. doi: 10.1038/ismej.2015.131
dc.identifier.citedreferenceLu, Y., J. E. Bauer, E. A. Canuel, Y. Yamashita, R. M. Chambers, and R. Jaffé. 2013. Photochemical and microbial alteration of dissolved organic matter in temperate headwater streams associated with different land use. J. Geophys. Res. Biogeosci. 118: 566 – 580. doi: 10.1002/jgrg.20048
dc.identifier.citedreferenceLundeen, R. A., and K. McNeill. 2013. Reactivity differences of combined and free amino acids: Quantifying the relationship between three‐dimensional protein structure and singlet oxygen reaction rates. Environ. Sci. Technol. 47: 14215 – 14223. doi: 10.1021/es404236c
dc.identifier.citedreferenceMann, P. J., and others. 2014. Evidence for key enzymatic controls on metabolism of Arctic river organic matter. Glob. Chang. Biol. 20: 1089 – 1100. doi: 10.1111/gcb.12416
dc.identifier.citedreferenceMcCallister, S. L., and P. A. del Giorgio. 2012. Evidence for the respiration of ancient terrestrial organic C in northern temperate lakes and streams. Proc. Natl. Acad. Sci. USA 109: 16963 – 16968. doi: 10.1073/pnas.1207305109
dc.identifier.citedreferenceMcCarren, J., J. W. Becker, D. J. Repeta, Y. Shi, C. R. Young, R. R. Malmstrom, S. W. Chisholm, and E. F. DeLong. 2010. Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc. Natl. Acad. Sci. USA 107: 16420 – 16427. doi: 10.1073/pnas.1010732107
dc.identifier.citedreferenceMeyers, P. A., M. J. Leenheer, B. J. Eaoie, and S. J. Maule. 1984. Organic geochemistry of suspended and settling particulate matter in Lake Michigan. Geochim. Cosmochim. Acta 48: 443 – 452. doi: 10.1016/0016-7037(84)90273-4
dc.identifier.citedreferenceMiles, C. J., and P. L. Brezonik. 1981. Oxygen consumption in humic‐colored waters by a photochemical ferrous‐ferric catalytic cycle. Environ. Sci. Technol. 15: 1089 – 1095. doi: 10.1021/es00091a010
dc.identifier.citedreferenceMinor, E., and B. Stephens. 2008. Dissolved organic matter characteristics within the Lake Superior watershed. Org. Geochem. 39: 1489 – 1501. doi: 10.1016/j.orggeochem.2008.08.001
dc.identifier.citedreferenceMolot, L. A., J. J. Hudson, P. J. Dillon, and S. A. Miller. 2005. Effect of pH on photo‐oxidation of dissolved organic carbon by hydroxyl radicals in a coloured, softwater stream. Aquat. Sci. 67: 189 – 195. doi: 10.1007/s00027-005-0754-9
dc.identifier.citedreferenceMoran, M. A., W. M. Sheldon, Jr., R. G. Zepp. 2000. Carbon loss and optical property changes during long‐term photochemical and biological degradation of estuarine dissolved organic matter. Limnol. Oceanogr. 45: 1254 – 1264. doi: 10.4319/lo.2000.45.6.1254
dc.identifier.citedreferenceMostovaya, A., B. Koehler, F. Guillemette, A. K. Brunberg, and L. J. Tranvik. 2016. Effects of compositional changes on reactivity continuum and decomposition kinetics of lake dissolved organic matter. J. Geophys. Res. Biogeosci. 121: 1733 – 1746. doi: 10.1002/2016JG003359
dc.identifier.citedreferenceNeale, P. J., A. L. Pritchard, and R. Ihnacik. 2014. UV effects on the primary productivity of picophytoplankton: Biological weighting functions and exposure response curves of Synechococcus. Biogeosciences 11: 2883 – 2895. doi: 10.5194/bg-11-2883-2014
dc.identifier.citedreferenceOpsahl, S. P., and R. G. Zepp. 2001. Photochemically‐induced alteration of stable carbon isotope ratios (δ 13 C) in terrigenous dissolved organic carbon. Geophys. Res. Lett. 28: 2417 – 2420. doi: 10.1029/2000GL012686
dc.identifier.citedreferenceOsburn, C. L., L. Retamal, and W. F. Vincent. 2009. Photoreactivity of chromophoric dissolved organic matter transported by the Mackenzie River to the Beaufort Sea. Mar. Chem. 115: 10 – 20. doi: 10.1016/j.marchem.2009.05.003
dc.identifier.citedreferencePage, S. E., J. R. Logan, R. M. Cory, and K. McNeill. 2014. Evidence for dissolved organic matter as the primary source and sink of photochemically produced hydroxyl radical in Arctic surface waters. Environ. Sci. Process. Impacts 16: 807 – 822. doi: 10.1039/c3em00596h
dc.identifier.citedreferencePeterson, B. M., A. M. McNally, R. M. Cory, J. D. Thoemke, J. B. Cotner, and K. McNeill. 2012. Spatial and temporal distribution of singlet oxygen in Lake Superior. Environ. Sci. Technol. 46: 7222 – 7229. doi: 10.1021/es301105e
dc.identifier.citedreferencePullin, M. J., S. Bertilsson, J. V. Goldstone, and B. M. Voelker. 2004. Effects of sunlight and hydroxyl radical on dissolved organic matter: Bacterial growth efficiency and production of carboxylic acids and other substrates. Limnol. Oceanogr. 49: 2011 – 2022. doi: 10.4319/lo.2004.49.6.2011
dc.identifier.citedreferenceRaymond, P. A., J. Hartmann, R. Lauerwald, and others. 2013. Global carbon dioxide emissions from inland waters. Nature 503: 355 – 359. doi: 10.1038/nature12760
dc.identifier.citedreferenceReader, H. E., and W. L. Miller. 2014. The efficiency and spectral photon dose dependence of photochemically induced changes to the bioavailability of dissolved organic carbon. Limnol. Oceanogr. 59: 182 – 194. doi: 10.4319/lo.2014.59.1.0182
dc.identifier.citedreferenceSleighter, R. L., R. M. Cory, L. A. Kaplan, H. A. N. Abdulla, P. G. Hatcher. 2014. A coupled geochemical and biogeochemical approach to characterize the bioreactivity of dissolved organic matter from a headwater stream. J. Geophys. Res. Biogeosci. 119: 1520 – 1537. doi: 10.1002/2013JG002600
dc.identifier.citedreferenceSpencer, R. G. M., and others. 2009. Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River. J. Geophys. Res. Biogeosci. 114: 1 – 12. doi: 10.1029/2009JG000968
dc.identifier.citedreferenceStubbins, A., and others. 2010. Illuminated darkness: Molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry. Limnol. Oceanogr. 55: 1467 – 1477. doi: 10.4319/lo.2010.55.4.1467
dc.identifier.citedreferenceStubbins, A., J. Lapierre, M. Berggren, Y. T. Prairie, T. Dittmar, and P. A. del Giorgio. 2014. What’s in an EEM? Molecular signatures associated with dissolved organic fluorescence in Boreal Canada. Environ. Sci. Technol. 48: 105598 – 10606. doi: 10.1021/es502086e
dc.identifier.citedreferenceSulzberger, B., and E. Durisch‐Kaiser. 2009. Chemical characterization of dissolved organic matter (DOM): A prerequisite for understanding UV‐induced changes of DOM absorption properties and bioavailability. Aquat. Sci. 71: 104 – 126. doi: 10.1007/s00027-008-8082-5
dc.identifier.citedreferenceTranvik, L. J., and S. Bertilsson. 2001. Contrasting effects of solar UV radiation on dissolved organic sources for bacterial growth. Ecol. Lett. 4: 458 – 463. doi: 10.1046/j.1461-0248.2001.00245.x
dc.identifier.citedreferenceTzortziou, M., C. L. Osburn, and P. J. Neale. 2007. Photobleaching of dissolved organic material from a tidal marsh‐estuarine system of the Chesapeake Bay. Photochem. Photobiol. 83: 782 – 792. doi: 10.1111/j.1751-1097.2007.00142.x
dc.identifier.citedreferenceVachon, D., J. Lapierre, and P. A. del Giorgio 2016. Seasonality of photochemical dissolved organic carbon mineralization and its relative contribution to pelagic CO 2 production in northern lakes. J. Geophys. Res. Biogeosciences 121: 864 – 878. doi: 10.1002/2015JG003244
dc.identifier.citedreferenceVähätalo, A. V, M. Salkinoja‐Salonen, P. Taalas, and K. Salonen. 2000. Spectrum of the quantum yield for photochemical mineralization of dissolved organic carbon in a humic lake. Limnol. Oceanogr. 45: 664 – 676. doi: 10.4319/lo.2000.45.3.0664
dc.identifier.citedreferenceVähätalo, A. V., K. Salonen, U. Münster, M. Järvinen, and R. G. Wetzel. 2003. Photochemical transformation of allochthonous organic matter provides bioavailable nutrients in a humic lake. Arch. Hydrobiol. 156: 287 – 314. doi: 10.1127/0003-9136/2003/0156-0287
dc.identifier.citedreferenceVolk, C. J., C. B. Volk, and L. A. Kaplan. 1997. Chemical composition of biodegradable dissolved organic matter in streamwater. Limnol. Oceanogr. 42: 39 – 44. doi: 10.4319/lo.1997.42.1.0039
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.