Show simple item record

Relations Between vz and Bx Components in Solar Wind and their Effect on Substorm Onset

dc.contributor.authorKubyshkina, Marina
dc.contributor.authorSemenov, Vladimir
dc.contributor.authorErkaev, Nikolay
dc.contributor.authorGordeev, Evgeny
dc.contributor.authorDubyagin, Stepan
dc.contributor.authorGanushkina, Natalia
dc.contributor.authorShukhtina, Maria
dc.date.accessioned2018-06-11T17:59:20Z
dc.date.available2019-07-01T14:52:17Zen
dc.date.issued2018-05-16
dc.identifier.citationKubyshkina, Marina; Semenov, Vladimir; Erkaev, Nikolay; Gordeev, Evgeny; Dubyagin, Stepan; Ganushkina, Natalia; Shukhtina, Maria (2018). "Relations Between vz and Bx Components in Solar Wind and their Effect on Substorm Onset." Geophysical Research Letters 45(9): 3760-3767.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/144242
dc.description.abstractWe analyze two substorm onset lists, produced by different methods, and show that the (Bx·vz) product of the solar wind (SW) velocity and interplanetary magnetic field (IMF) components for two thirds of all substorm onsets has the same sign as IMF Bz. The explanation we suggest is the efficient displacement of the magnetospheric plasma sheet due to IMF Bx and SW flow vz, which both force the plasma sheet moving in one direction if the sign of (Bx·vz) correlates with the sign Bz. The displacement of the current sheet, in its turn, increases the asymmetry of the magnetotail and can alter the threshold of substorm instabilities. We study the SW and IMF data for the 15‐year period (which comprises two substorm lists periods and the whole solar cycle) and reveal the similar asymmetry in the SW, so that the sign of (Bx·vz) coincides with the sign of IMF Bz during about two thirds of all the time. This disproportion can be explained if we admit that about 66% of IMF Bz component is transported to the Earth’s orbit by the Alfvén waves with antisunward velocities.Plain Language SummaryWe explore the interplanetary magnetic field configuration together with the direction of the solar wind flow velocity to demonstrate that the plasma sheet motion, which is caused by both magnetic field component Bx and solar wind flow component vz, may affect the substorm onset. The obtained statistical result shows that the number of substorms, which broke in a situation when IMF Bz has the same sign as (Bx·vz) (favorable for the plasma sheet displacement), is 30–50% larger than the number of other substorms. The same relation was obtained for two different substorm onset databases, one obtained from Imager For Magnetopause‐to‐Aurora Global Exploration Far Ultraviolet observations and the other from ground‐based AL index.Key PointsUsing two substorm lists, we show that for two thirds of all substorm onsets, the (Bx·vz) product in the solar wind has the same sign as the IMF BzWhen the signs of the product (Bx·vz) and the IMF Bz coincide, the asymmetry (bending) of the magnetotail current sheet increasesSigns correlation of (Bx·vz) and Bz in the SW (a feature of Alfvénic waves propagating from the Sun) is observed during two thirds of all the time
dc.publisherWiley Periodicals, Inc.
dc.subject.othermagnetosphere
dc.subject.othermagnetotail configuration
dc.subject.othersubstorm trigger
dc.subject.othersubstorm
dc.titleRelations Between vz and Bx Components in Solar Wind and their Effect on Substorm Onset
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144242/1/grl57137_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144242/2/grl57137.pdf
dc.identifier.doi10.1002/2017GL076268
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceReistad, J. P., Östgaard, N., Laundal, K. M., Haaland, S., Tenfjord, P., Snekvik, K., et al. ( 2014 ). Intensity asymmetries in the dusk sector of the poleward auroral oval due to IMF B x. Journal of Geophysical Research: Space Physics, 119, 9497 – 9507. https://doi.org/10.1002/2014JA020216
dc.identifier.citedreferenceBelcher, J. W., & Davis, L. ( 1971 ). Large‐amplitude Alfveń waves in the interplanetary medium, 2. Journal of Geophysical Research, 76, 3534 – 3563.
dc.identifier.citedreferenceBorovsky, J. E., & Yakymenko, K. ( 2017 ). Substorm occurrence rates, substorm recurrence times, and solar wind structure. Journal of Geophysical Research: Space Physics, 122, 2973 – 2998. https://doi.org/10.1002/2016JA023625
dc.identifier.citedreferenceCowley, S. W. H. ( 1981 ). Asymmetry effects associated with the x ‐component of the IMF in a magnetically open magnetosphere. Planetary and Space Science, 29 ( 8 ), 809 – 818.
dc.identifier.citedreferenceDungey, J. W. ( 1961 ). Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6, 47 – 48.
dc.identifier.citedreferenceFairfield, D. H., & Cahill, J. L. J. ( 1966 ). Transition region magnetic field and polar magnetic disturbances. Journal of Geophysical Research, 71 ( 1 ), 155 – 169.
dc.identifier.citedreferenceFreeman, M. P., & Morley, S. K. ( 2009 ). No evidence for externally triggered substorms based on superposed epoch analysis of IMF B z. Geophysical Research Letters, 36, L21101. https://doi.org/10.1029/2009GL040621
dc.identifier.citedreferenceFrey, H. U., Mende, S. B., Angelopoulos, V., & Donovan, E. F. ( 2004 ). Substorm onset observations by IMAGE‐FUV. Journal of Geophysical Research, 109, A10304. https://doi.org/10.1029/2004JA010607
dc.identifier.citedreferenceGordeev, E. I., Sergeev, V. A., Amosova, M. V., & Andreeva, V. A. ( 2016 ). Influence of interplanetary magnetic field radial component on the position of the Earth’s magnetotail neutral sheet. Geophysical Methods of Survey the Earth and Its Subsoil, 11 – 21. https://doi.org/10.13140/RG.2.1.4821.6565
dc.identifier.citedreferenceHoilijoki, S., Souza, V. M., Walsh, B. M., Janhunen, P., & Palmroth, M. ( 2014 ). Magnetopause reconnection and energy conversion as influenced by the dipole tilt and the IMF B x. Journal of Geophysical Research: Space Physics, 119, 4484 – 4494. https://doi.org/10.1002/2013JA019693
dc.identifier.citedreferenceKubyshkina, M., Tsyganenko, N., Semenov, V., Kubyshkina, D., Partamies, N., & Gordeev, E. ( 2015 ). Further evidence for the role of magnetotail current shape in substorm initiation. Earth, Planets and Space, 67, 139. https://doi.org/10.1186/s40623-015-0304-1
dc.identifier.citedreferenceLyons, L. R., Blanchard, G. T., Samson, J. C., Lepping, R. P., Yamamoto, T., & Morreto, T. ( 1997 ). Coordinated observations demonstrating external substorm triggering. Journal of Geophysical Research, 102 ( A12 ), 27,039 – 27,051. https://doi.org/10.1029/97JA02639
dc.identifier.citedreferenceMorley, S. K., & Freeman, M. P. ( 2007 ). On the association between northward turnings of the interplanetary magnetic field and substorm onsets. Geophysical Research Letters, 34, L08104. https://doi.org/10.1029/2006GL028891
dc.identifier.citedreferenceNewell, P. T., & Gjerloev J. W. ( 2011 ). Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. Journal of Geophysical Research, 116, A12211. https://doi.org/10.1029/2011JA016779
dc.identifier.citedreferenceNewell, P. T., Liou, K., Gjerloev, J. W., Sotirelis, T., Wing, S., & Mitchell, E. J. ( 2016 ). Substorm probabilities are best predicted romsolar wind speed. Journal of Atmospheric and Solar‐Terrestrial Physics, 146, 28 – 37. https://doi.org/10.1016/J.JASTP.2016.04.019
dc.identifier.citedreferencePanov, E. V., Nakamura, R., Baumjohann, W., Kubyshkina, M., Artemyev, A. V., Sergeev, V. A., et al. ( 2012 ). Kinetic ballooning/interchange instability in a bent plasma sheet. Journal of Geophysical Research, 117, A06228. https://doi.org/10.1029/2011JA017496
dc.identifier.citedreferenceKivelson, M. G., & Hughes, W. J. ( 1990 ). On the threshold for triggering substorms. Planetary and Space Science, 38 ( 2 ), 211 – 220.
dc.identifier.citedreferenceRostoker, G., & Falthammar, C. G. ( 1967 ). Relationship between changes in the interplanetary magnetic field and variations in the magnetic field at Earth’s surface. Journal of Geophysical Research, 72, 5853 – 5863.
dc.identifier.citedreferenceSemenov, V. S., Kubyshkina, D. I., Kubyshkina, M. V., Kubyshkin, I. V., & Partamies, N. ( 2015 ). On the correlation between the fast solar wind flow changes and substorm occurrence. Geophysical Research Letters, 42, 5117 – 5124. https://doi.org/10.1002/2015GL064806
dc.identifier.citedreferenceSergeev, V. A., Tsyganenko, N. A., & Angelopoulos, V. ( 2008 ). Dynamical response of the magnetotail to changes of the solar wind direction: An MHD modeling perspective. Annals of Geophysics, 26, 2395 – 2402. https://doi.org/10.5194/angeo-26-2395-2008
dc.identifier.citedreferenceSnekvik, K., Tanskanen, E. I., & Kilpua, E. K. J. ( 2013 ). An automated identification method for Alfvénic streams and their geoeffectiveness. Journal of Geophysical Research: Space Physics, 118, 5986–5998. https://doi.org/10.1002/jgra.5058
dc.identifier.citedreferenceTanskanen, E. I. ( 2009 ). A comprehensive high‐throughput analysis of substorms observed by IMAGE magnetometer network: Years 1993–2003 examined. Journal of Geophysical Research, 114, A05204. https://doi.org/10.1029/2008JA013682
dc.identifier.citedreferenceTsyganenko, N. A., & Fairfield, D. H. ( 2004 ). Global shape of the magnetotail current sheet as derived from Geotail and Polar data. Journal of Geophysical Research, 109, A03218. https://doi.org/10.1029/2003JA010062
dc.identifier.citedreferenceVörös, Z., Fasko, G., Khodanchenko, M., Honkonen, I., Janhunen, P., & Palmroth, M. ( 2014 ). Windsock memory Conditioned RAM (CO‐RAM) pressure effect: Forced re‐ 313 connection in the Earth’s magnetotail. Journal of Geophysical Research: Space Physics, 119, 6273 – 6293. https://doi.org/10.1002/2014JA019857
dc.identifier.citedreferenceZhang, X.‐Y., Moldwin, M. B., Steinberg, J. T., & Skoug, R. M. ( 2014 ). Alfvén waves as a possible source of long‐duration, large‐amplitude, and geoeffective southward IMF. Journal of Geophysical Research: Space Physics, 119, 3259 – 3266. https://doi.org/10.1002/2013JA019623
dc.identifier.citedreferenceAkasofu, S. I. ( 1975 ). Roles of north‐south component of interplanetary magnetic‐field on large‐scale auroral dynamics observed by DMSP satellite. Planetary and Space Science, 23, 1349 – 1354.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.