Show simple item record

Incongruence in molecular species delimitation schemes: What to do when adding more data is difficult

dc.contributor.authorJacobs, Sarah J.
dc.contributor.authorKristofferson, Casey
dc.contributor.authorUribe‐convers, Simon
dc.contributor.authorLatvis, Maribeth
dc.contributor.authorTank, David C.
dc.date.accessioned2018-06-11T17:59:36Z
dc.date.available2019-07-01T14:52:17Zen
dc.date.issued2018-05
dc.identifier.citationJacobs, Sarah J.; Kristofferson, Casey; Uribe‐convers, Simon ; Latvis, Maribeth; Tank, David C. (2018). "Incongruence in molecular species delimitation schemes: What to do when adding more data is difficult." Molecular Ecology 27(10): 2397-2413.
dc.identifier.issn0962-1083
dc.identifier.issn1365-294X
dc.identifier.urihttps://hdl.handle.net/2027.42/144255
dc.description.abstractUsing multiple, independent approaches to molecular species delimitation is advocated to accommodate limitations and assumptions of a single approach. Incongruence in delimitation schemes is a potential byâ product of employing multiple methods on the same data, and little attention has been paid to its reconciliation. Instead, a particular scheme is prioritized, and/or molecular delimitations are coupled with additional, independent lines of evidence that mitigate incongruence. We advocate that incongruence within a line of evidence should be accounted for before comparing across lines of evidence that can themselves be incongruent. Additionally, it is not uncommon for empiricists working in nonmodel systems to be dataâ limited, generating some concern for the adequacy of available data to address the question of interest. With conservation and management decisions often hinging on the status of species, it seems prudent to understand the capabilities of approaches we use given the data we have. Here, we apply two molecular species delimitation approaches, spedeSTEM and BPP, to the Castilleja ambigua (Orobanchaceae) species complex, a relatively young plant lineage in western North America. Upon finding incongruence in our delimitation, we employed a post hoc simulation study to examine the power of these approaches to delimit species. Given the data we collected, we find that spedeSTEM lacks the power to delimit while BPP is capable, thus allowing us to address incongruence before proceeding in delimitation. We suggest post hoc simulation studies like this compliment empirical delimitation and serve as a means of exploring conflict within a line of evidence and dealing with it appropriately.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherBPP
dc.subject.otherspecies delimitation
dc.subject.othersimulation
dc.subject.otherspedeSTEM
dc.subject.otherincongruent delimitation scheme
dc.subject.otherCastilleja
dc.titleIncongruence in molecular species delimitation schemes: What to do when adding more data is difficult
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144255/1/mec14590_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144255/2/mec14590.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144255/3/mec14590-sup-0001-DataS1-S7.pdf
dc.identifier.doi10.1111/mec.14590
dc.identifier.sourceMolecular Ecology
dc.identifier.citedreferenceReeves, P. A., & Richards, C. M. ( 2010 ). Species delimitation under the general lineage concept: An empirical example using wild North American hops (Cannabaceae: Humulus lupulus ). Systematic Biology, 60, 45 â 59.
dc.identifier.citedreferenceRonquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., â ¦ Huelsenbeck, J. P. ( 2012 ). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539 â 542. https://doi.org/10.1093/sysbio/sys029
dc.identifier.citedreferenceRuane, S., Bryson, R. W., Pyron, R. A., & Burbrink, F. T. ( 2014 ). Coalescent species delimitation in milksnakes (Genus Lampropeltis ) and impacts on phylogenetic comparative analyses. Systematic Biology, 63, 231 â 250. https://doi.org/10.1093/sysbio/syt099
dc.identifier.citedreferenceRuane, S., Raxworthy, C. J., Lemmon, A. R., Lemmon, E. M., & Burbrink, F. T. ( 2015 ). Comparing species tree estimation with large anchored phylogenomic and small Sangerâ sequenced molecular datasets: An empirical study on Malagasy pseudoxyrhophiine snakes. BMC Evolutionary Biology, 15, 221. https://doi.org/10.1186/s12862-015-0503-1
dc.identifier.citedreferenceSatler, J. D., Carstens, B. C., & Hedin, M. ( 2013 ). Multilocus species delimitation in a complex of morphologically conserved trapdoor spiders (Mygalomorphae, Antrodiaetidae, Aliatypus). Systematic Biology, 62, 805 â 823. https://doi.org/10.1093/sysbio/syt041
dc.identifier.citedreferenceSchlickâ Steiner, B. C., Steiner, F. M., Seifert, B., Stauffer, C., Christian, E., & Crozier, R. H. ( 2010 ). Integrative taxonomy: A multisource approach to exploring biodiversity. Annual Review of Entomology, 55, 421 â 438. https://doi.org/10.1146/annurev-ento-112408-085432
dc.identifier.citedreferenceShafer, A. B. A., Cullingham, C. I., Cote, S. D., & Coltman, D. W. ( 2010 ). Of glaciers and refugia: A decade of study sheds new light on the phylogeography of northwestern North America. Molecular Ecology, 19, 4589 â 4621. https://doi.org/10.1111/j.1365-294X.2010.04828.x
dc.identifier.citedreferenceSingh, G., Dal Grande, F., Divakar, P. K., Otte, J., Leavitt, S. D., Szczepanska, K., â ¦ Schmitt, I. ( 2015 ). Coalescentâ based species delimitation approach uncovers high cryptic diversity in the cosmopolitan lichenâ forming fungal genus Protoparmelia (Lecanorales, Ascomycota). PLoS ONE, 10, e0124625. https://doi.org/10.1371/journal.pone.0124625
dc.identifier.citedreferenceSites, J. W. Jr, & Marshall, J. C. ( 2003 ). Delimiting species: A renaissance issue in systematic biology. Trends in Ecology & Evolution, 18, 462 â 470. https://doi.org/10.1016/S0169-5347(03)00184-8
dc.identifier.citedreferenceSmith, S. A., & Dunn, C. W. ( 2008 ). Phyutility: A phyloinformatics tool for trees, alignments and molecular data. Bioinformatics, 24, 715 â 716. https://doi.org/10.1093/bioinformatics/btm619
dc.identifier.citedreferenceSolísâ Lemus, C., Knowles, L. L., & Ané, C. ( 2015 ). Bayesian species delimitation combining multiple genes and traits in a unified framework. Evolution, 69, 492 â 507. https://doi.org/10.1111/evo.12582
dc.identifier.citedreferenceSukumaran, J., & Holder, M. T. ( 2010 ). DendroPy: A Python library for phylogenetic computing. Bioinformatics, 26, 1569 â 1571. https://doi.org/10.1093/bioinformatics/btq228
dc.identifier.citedreferenceSukumaran, J., & Knowles, L. L. ( 2017 ). Multispecies coalescent delimits structure, not species. Proceedings of the National Academy of Sciences of the United States of America, 114, 1607 â 1612. https://doi.org/10.1073/pnas.1607921114
dc.identifier.citedreferenceTank, D. C., Egger, J. M., & Olmstead, R. G. ( 2009 ). Phylogenetic classification of subtribe Castillejinae (Orobanchaceae). Systematic Botany, 34, 182 â 197. https://doi.org/10.1600/036364409787602357
dc.identifier.citedreferenceTank, D. C., & Olmstead, R. G. ( 2008 ). From annuals to perennials: Phylogeny of subtribe Castillejinae (Orobanchaceae). American Journal of Botany, 95, 608 â 625. https://doi.org/10.3732/ajb.2007346
dc.identifier.citedreferenceTank, D. C., & Olmstead, R. G. ( 2009 ). The evolutionary origin of a second radiation of annual Castilleja (Orobanchaceae) species in South America: The role of long distance dispersal and allopolyploidy. American Journal of Botany, 96, 1907 â 1921. https://doi.org/10.3732/ajb.0800416
dc.identifier.citedreferenceUribeâ Convers, S., Settles, M. L., & Tank, D. C. ( 2016 ). A phylogenomic approach based on PCR target enrichment and high throughput sequencing: Resolving the diversity within the South American species of Bartsia L. (Orobanchaceae). PLoS ONE, 11, e0148203. https://doi.org/10.1371/journal.pone.0148203
dc.identifier.citedreferenceWetherwax, M., Chuang, T. I., & Heckard, L. ( 2017 ). Castilleja ambigua, Jepson eFlora. Retrieved from http://ucjeps.berkeley.edu/cgi-bin/get_IJM.pl?tid=18158
dc.identifier.citedreferenceWiens, J. ( 2007 ). Species delimitation: New approaches for discovering diversity. Systematic Biology, 56, 875 â 878. https://doi.org/10.1080/10635150701748506
dc.identifier.citedreferenceYang, Z., & Rannala, B. ( 2010 ). Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences of the United States of America, 107, 9264 â 9269. https://doi.org/10.1073/pnas.0913022107
dc.identifier.citedreferenceYang, Z., & Rannala, B. ( 2014 ). Unguided species delimitation using DNA sequence data from multiple loci. Molecular Biology and Evolution, 31, 3125 â 3135. https://doi.org/10.1093/molbev/msu279
dc.identifier.citedreferenceYeates, D. K., Seago, A., Nelson, L., Cameron, S. L., Joseph, L., & Trueman, J. W. H. ( 2010 ). Integrative taxonomy, or iterative taxonomy? Systematic Entomology, 36, 209 â 217.
dc.identifier.citedreferenceZapata, F., & Jiménez, I. ( 2012 ). Species delimitation: Inferring gaps in morphology across geography. Systematic Biology, 61, 179 â 194. https://doi.org/10.1093/sysbio/syr084
dc.identifier.citedreferenceZhang, C., Rannala, B., & Yang, Z. ( 2014 ). Bayesian species delimitation can be robust to guideâ tree inference errors. Systematic Biology, 63, 993 â 1004. https://doi.org/10.1093/sysbio/syu052
dc.identifier.citedreferenceZwickl, D. J. ( 2006 ). Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. University of Texas, Austin, PhD dissertation.
dc.identifier.citedreferenceCarstens, B. C., & Satler, J. D. ( 2013 ). The carnivorous plant described as Sarracenia alata contains two cryptic species. Biological Journal of the Linnean Society, 109, 737 â 746. https://doi.org/10.1111/bij.12093
dc.identifier.citedreferenceBybee, S. M., Brackenâ Grissom, H., Haynes, B. D., Hermansen, R. A., Byers, R. L., Clement, M. J., â ¦ Crandall, K. A. ( 2011 ). Targeted amplicon sequencing (TAS): A scalable nextâ gen approach to multilocus, multitaxa phylogenetics. Genome Biology and Evolution, 3, 1312 â 1323. https://doi.org/10.1093/gbe/evr106
dc.identifier.citedreferenceCamargo, A., Morando, M., Avila, L. J., & Sites, J. W. Jr ( 2012 ). Species delimitation with ABC and other coalescentâ based methods: A test of accuracy with simulations and an empirical example with lizards of the Liolaemus darwinii complex (Squamata: Liolaemidae). Evolution, 66, 2834 â 2849. https://doi.org/10.1111/j.1558-5646.2012.01640.x
dc.identifier.citedreferenceCamargo, A., & Sites, J. Jr. ( 2013 ). Species delimitation: A decade after the renaissance. In Y. Igor (Ed.), The species problem â ongoing issues. Pavlinov, Czech Republic: InTech.
dc.identifier.citedreferenceAdams, M., Raadik, T. A., Burridge, C. P., & Georges, A. ( 2014 ). Global biodiversity assessment and hyperâ cryptic species complexes: More than one species of elephant in the room? Systematic Biology, 63, 518 â 533. https://doi.org/10.1093/sysbio/syu017
dc.identifier.citedreferenceAgapow, P. M., Binindaâ Emonds, O. R. P., Crandall, K. A., Gittleman, J. L., Mace, G. M., Marshall, J. C., & Purvis, A. ( 2004 ). The impact of species concept on biodiversity studies. Quarterly Review of Biology, 79, 161 â 179. https://doi.org/10.1086/383542
dc.identifier.citedreferenceAguilar, C., Wood, P., Cusi, J. C., Guzman, A., Huari, F., Lundberg, M., â ¦ Sites, J. W. ( 2013 ). Integrative taxonomy and preliminary assessment of species limits in Liolaemus walker complex (Squamata, Liolaemidae) with descriptions of three new species from Peru. ZooKeys, 364, 47 â 91. https://doi.org/10.3897/zookeys.364.6109
dc.identifier.citedreferenceAnderson, A. V. R., & Taylor, R. J. ( 1983 ). Patterns of morphological variation in a population of mixed species of Castilleja (Scrophulariaceae). Systematic Botany, 8, 225 â 232. https://doi.org/10.2307/2418476
dc.identifier.citedreferenceAnderson, D. R. ( 2008 ). Model based inference in the life sciences: A primer on evidence. New York, NY: Springer.
dc.identifier.citedreferenceAndújar, C., Arribas, P., Ruiz, C., Serrano, J., & Gómezâ Zurita, J. ( 2014 ). Integration of conflict into integrative taxonomy: Fitting hybridization in species delimitation of Mesocarabus (Coleoptera: Carabidae). Molecular Ecology, 23, 4344 â 4361. https://doi.org/10.1111/mec.12793
dc.identifier.citedreferenceBaldwin, B. G. ( 1992 ). Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: An example from Compositae. Molecular Phylogenetics and Evolution, 1, 3 â 16. https://doi.org/10.1016/1055-7903(92)90030-K
dc.identifier.citedreferenceBaldwin, B. G., & Markos, S. ( 1998 ). Phylogenetic utility of the external transcribed spacer (ETS) of 18Sâ 26S rDNA: Congruence of ETS and ITS trees of Calycadenia (Compositae). Molecular Phylogenetics and Evolution, 10, 449 â 463. https://doi.org/10.1006/mpev.1998.0545
dc.identifier.citedreferenceBarley, A. J., Brown, J. M., & Thomson, R. C. ( 2018 ). Impact of model violations on the inference of species boundaries under the multispecies coalescent. Systematic Biology, 67, 269 â 284. https://doi.org/10.1093/sysbio/syx073
dc.identifier.citedreferenceBeardsley, P. M., & Olmstead, R. G. ( 2002 ). Redefining Phrymaceae: The placement of Mimulus, tribe Mimuleae and Phryma. American Journal of Botany, 89, 1093 â 1102. https://doi.org/10.3732/ajb.89.7.1093
dc.identifier.citedreferenceBeerli, P., & Felsenstein, J. ( 2001 ). Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proceedings of the National Academy of Sciences of the United States of America, 98, 4563 â 4568. https://doi.org/10.1073/pnas.081068098
dc.identifier.citedreferenceBlaimer, B. B., Brady, S. G., & Schultz, T. R. ( 2015 ). Phylogenomic methods outperform traditional multiâ locus approaches in resolving deep evolutionary history: A case study of formicine ants. BMC Evolutionary Biology, 15, 271. https://doi.org/10.1186/s12862-015-0552-5
dc.identifier.citedreferenceBouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C., Xi, D., ⠦ Drummond, A. J. ( 2014 ). BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10, e1003537. https://doi.org/10.1371/journal.pcbi.1003537
dc.identifier.citedreferenceBrunsfeld, S. J., Sullivan, J., Soltis, D. E., & Soltis, P. S. ( 2001 ). Comparative phylogeography of northâ western North America: A synthesis. Special Publicationâ British Ecological Society, 14, 319 â 340.
dc.identifier.citedreferenceRannala, B., & Yang, Z. ( 2013 ). Improved reversible jump algorithms for Bayesian species delimitation. Genetics, 194, 245 â 253. https://doi.org/10.1534/genetics.112.149039
dc.identifier.citedreferenceCarstens, B. C., Pelletier, T. A., Reid, N. M., & Satler, J. D. ( 2013 ). How to fail at species delimitation. Molecular Ecology, 22, 4369 â 4383. https://doi.org/10.1111/mec.12413
dc.identifier.citedreferenceChuang, T. I., & Heckard, L. R. ( 1991 ). Generic realignment and synopsis of subtribe Castillejinae (Scrophulariaceaeâ tribe Pediculareae). Systematic Botany, 16, 644 â 666. https://doi.org/10.2307/2418868
dc.identifier.citedreferenceClay, D. L., Novak, S. J., Serpe, M. D., Tank, D. C., & Smith, J. F. ( 2012 ). Homoploid hybrid speciation in a rare endemic Castilleja from Idaho ( Castilleja christii, Orobanchaceae). American Journal of Botany, 99, 1976 â 1990. https://doi.org/10.3732/ajb.1200326
dc.identifier.citedreferenceCostello, M. J., May, R. M., & Stork, N. E. ( 2013 ). Can we name earth’s species before they go extinct? Science, 339, 413 â 416. https://doi.org/10.1126/science.1230318
dc.identifier.citedreferenceDoyle, J. J., & Doyle, J. L. ( 1987 ). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin, 19, 11 â 15.
dc.identifier.citedreferenceDrummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. ( 2012 ). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969 â 1973. https://doi.org/10.1093/molbev/mss075
dc.identifier.citedreferenceEdgar, R. C. ( 2004 ). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792 â 1797. https://doi.org/10.1093/nar/gkh340
dc.identifier.citedreferenceEdwards, D. L., & Knowles, L. L. ( 2014 ). Species detection and individual assignment in species delimitation: Can integrative data increase efficacy? Proceedings of the Royal Society B, 281, 20132765. https://doi.org/10.1098/rspb.2013.2765
dc.identifier.citedreferenceEgger, J. M., Ruygt, J. A., & Tank, D. C. ( 2012 ). Castilleja ambigua var. meadii (OROBANCHACEAE): A new variety from Napa County, California. Phytoneuron, 68, 1 â 12.
dc.identifier.citedreferenceEnce, D. D., & Carstens, B. C. ( 2011 ). SpedeSTEM: A rapid and accurate method for species delimitation. Molecular Ecology Resources, 11, 473 â 480.
dc.identifier.citedreferenceEspíndola, A., Pellissier, L., Maiorano, L., Hordijk, W., Guisan, A., & Alvarez, N. ( 2012 ). Predicting present and future intraâ specific genetic structure through niche hindcasting across 24 millennia. Ecology Letters, 15, 649 â 657. https://doi.org/10.1111/j.1461-0248.2012.01779.x
dc.identifier.citedreferenceFairbarns, M., & Egger, J. M. ( 2007 ). Castilleja victoriae (Orobanchaceae): A new rare species from southeastern Vancouver Island, British Columbia, Canada, and the adjacent San Juan Islands, Washington, USA. Madroño, 54, 334 â 342.
dc.identifier.citedreferenceFlot, J.â F. ( 2015 ). Species delimitation’s coming of age. Systematic Biology, 64, 897 â 899. https://doi.org/10.1093/sysbio/syv071
dc.identifier.citedreferenceFolk, R. A., Mandel, J. R., & Freudenstein, J. V. ( 2017 ). Ancestral gene flow and parallel organellar genome capture result in extreme phylogenomic discord in a lineage of angiosperms. Systematic Biology, 66, 320 â 337.
dc.identifier.citedreferenceFolk, R. A., Visger, C. J., Soltis, P. S., Soltis, D. E., & Guralnick, R. P. ( 2017 ). Geographic range dynamics drove ancient hybridization in a lineage of angiosperms. bioRxiv, 129189. https://doi.org/10.1101/129189
dc.identifier.citedreferenceFujita, M. K., Leaché, A. D., Burbrink, F. T., McGuire, J. A., & Moritz, C. ( 2012 ). Coalescentâ based species delimitation in an integrative taxonomy. Trends in Ecology & Evolution, 27, 480 â 488. https://doi.org/10.1016/j.tree.2012.04.012
dc.identifier.citedreferenceGiarla, T. C., Voss, R. S., & Jansa, S. A. ( 2014 ). Hidden diversity in the Andes: Comparison of species delimitation methods on montane marsupials. Molecular Phylogenetics and Evolution, 70, 137 â 151. https://doi.org/10.1016/j.ympev.2013.09.019
dc.identifier.citedreferenceGoldberg, C. S., Tank, D. C., Uribeâ Convers, S., Bosworth, W. R., Marx, H. E., & Waits, L. P. ( 2011 ). Species designation of the Bruneau Dune tiger beetle ( Cicindela waynei ) is supported by phylogenetic analysis of mitochondrial DNA sequence data. Conservation Genetics, 13, 373 â 380.
dc.identifier.citedreferenceGrummer, J. A., Bryson, R. W., & Reeder, T. W. ( 2014 ). Species delimitation using Bayes factors: Simulations and application to the Sceloporus scalaris species group (Squamata: Phrynosomatidae). Systematic Biology, 63, 119 â 133. https://doi.org/10.1093/sysbio/syt069
dc.identifier.citedreferenceGuillot, G., Renaud, S., Ledevin, R., Michaux, J., & Claude, J. ( 2012 ). A unifying model for the analysis of phenotypic, genetic, and geographic data. Systematic Biology, 61, 897 â 911. https://doi.org/10.1093/sysbio/sys038
dc.identifier.citedreferenceHeckard, L. R. ( 1968 ). Chromosome numbers and polyploidy in Castilleja (Scrophulariaceae). Brittonia, 20, 212 â 226. https://doi.org/10.2307/2805444
dc.identifier.citedreferenceHeckard, L. R., & Chuang, T. I. ( 1977 ). Chromosomeâ numbers, polyploidy, and hybridization in Castilleja (Scrophulariaceae) of Great Basin and Rocky Mountains. Brittonia, 29, 159 â 172. https://doi.org/10.2307/2805849
dc.identifier.citedreferenceHedrick, P. W. ( 2001 ). Conservation genetics: Where are we now? Trends in Ecology & Evolution, 16, 629 â 636. https://doi.org/10.1016/S0169-5347(01)02282-0
dc.identifier.citedreferenceHerschâ Green, E. I. ( 2012 ). Polyploidy in Indian paintbrush (Castilleja; Orobanchaceae) species shapes but does not prevent gene flow across species boundaries. American Journal of Botany, 99, 1680 â 1690. https://doi.org/10.3732/ajb.1200253
dc.identifier.citedreferenceHerschâ Green, E. I., & Cronn, R. ( 2009 ). Tangled trios?: Characterizing a hybrid zone in Castilleja (Orobanchaceae). American Journal of Botany, 96, 1519 â 1531. https://doi.org/10.3732/ajb.0800357
dc.identifier.citedreferenceHewitt, G. M. ( 1996 ). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society, 58, 247 â 276. https://doi.org/10.1111/j.1095-8312.1996.tb01434.x
dc.identifier.citedreferenceHime, P. M., Hotaling, S., Grewelle, R. E., O’Neill, E. M., Voss, S. R., Shaffer, H. B., & Weisrock, D. W. ( 2016 ). The influence of locus number and information content on species delimitation: An empirical test case in an endangered Mexican salamander. Molecular Ecology, 25, 5959 â 5974. https://doi.org/10.1111/mec.13883
dc.identifier.citedreferenceHird, S., Kubatko, L., & Carstens, B. ( 2010 ). Rapid and accurate species tree estimation for phylogeographic investigations using replicated subsampling. Molecular Phylogenetics and Evolution, 57, 888 â 898. https://doi.org/10.1016/j.ympev.2010.08.006
dc.identifier.citedreferenceHudson, R. R. ( 2002 ). Generating samples under a Wrightâ Fisher neutral model of genetic variation. Bioinformatics, 18, 337 â 338. https://doi.org/10.1093/bioinformatics/18.2.337
dc.identifier.citedreferenceJackson, N. D., Carstens, B. C., Morales, A. E., & O’Meara, B. C. ( 2017 ). Species delimitation with gene flow. Systematic Biology, 66, 799 â 812.
dc.identifier.citedreferenceKnowles, L. L., & Carstens, B. ( 2007 ). Delimiting species without monophyletic gene trees. Systematic Biology, 56, 887 â 895. https://doi.org/10.1080/10635150701701091
dc.identifier.citedreferenceLanfear, R., Calcott, B., Ho, S. Y. W., & Guindon, S. ( 2012 ). PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695 â 1701. https://doi.org/10.1093/molbev/mss020
dc.identifier.citedreferenceLatvis, M. L., Mortimer, S. M. E., Moralesâ Briones, D. F., Torpey, S., Uribeâ Convers, S., Jacobs, S. J., â ¦ Tank, D. C. ( 2017 ). Primers for Castilleja and their utility across Orobanchaceae: I. Chloroplast primers. Applications in Plant Sciences, 5, 1 â 7.
dc.identifier.citedreferenceLeaché, A. D., & Fujita, M. K. ( 2010 ). Bayesian species delimitation in West African forest geckos ( Hemidactylus fasciatus ). Proceedings of the Royal Society B, 277, 3071 â 3077. https://doi.org/10.1098/rspb.2010.0662
dc.identifier.citedreferenceLemmon, E. M., & Lemmon, A. R. ( 2013 ). Highâ throughput genomic data in systematics and phylogenetics. Annual Review of Ecology, Evolution, and Systematics, 44, 99 â 121. https://doi.org/10.1146/annurev-ecolsys-110512-135822
dc.identifier.citedreferenceLim, G. S., Balke, M., & Meier, R. ( 2012 ). Determining species boundaries in a world full of rarity: Singletons, species delimitation methods. Systematic Biology, 61, 165 â 169. https://doi.org/10.1093/sysbio/syr030
dc.identifier.citedreferenceMcCormack, J. E., Hird, S. M., Zellmer, A. J., Carstens, B. C., & Brumfield, R. T. ( 2013 ). Applications of nextâ generation sequencing to phylogeography and phylogenetics. Molecular Phylogenetics and Evolution, 66, 526 â 538. https://doi.org/10.1016/j.ympev.2011.12.007
dc.identifier.citedreferenceMiller, M. A., Pfeiffer, W., & Schwartz, T. ( 2010 ). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE), 1â 8.
dc.identifier.citedreferenceMorales, A. E., Jackson, N. D., Dewey, T. A., O’Meara, B. C., & Carstens, B. C. ( 2017 ). Speciation with gene flow in North American Myotis bats. Systematic Biology, 66, 440 â 452.
dc.identifier.citedreferenceMyers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G., & Kent, J. ( 2000 ). Biodiversity hotspots for conservation priorities. Nature, 403, 853 â 858. https://doi.org/10.1038/35002501
dc.identifier.citedreferenceO’Meara, B. C. ( 2010 ). New heuristic methods for joint species delimitation and species tree inference. Systematic Biology, 59, 59 â 73. https://doi.org/10.1093/sysbio/syp077
dc.identifier.citedreferencePadial, J. M., Miralles, A., la Riva, De. I., & Vences, M. ( 2010 ). The integrative future of taxonomy. Frontiers in Zoology, 7, 16. https://doi.org/10.1186/1742-9994-7-16
dc.identifier.citedreferencePelletier, T. A., Crisafulli, C., Wagner, S., Zellmer, A. J., & Carstens, B. C. ( 2015 ). Historical species distribution models predict species limits in western Plethodon salamanders. Systematic Biology, 64, 909 â 925. https://doi.org/10.1093/sysbio/syu090
dc.identifier.citedreferencePimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., Joppa, L. N., & Raven, P. H. ( 2014 ). The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344, 1246792.
dc.identifier.citedreferencePons, J., Barraclough, T., Gomezâ Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., â ¦ Vogler, A. P. ( 2006 ). Sequenceâ based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55, 595 â 609. https://doi.org/10.1080/10635150600852011
dc.identifier.citedreferenceR Core Team ( 2016 ). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/.
dc.identifier.citedreferenceRambaut, A., & Grass, N. C. ( 1997 ). Seqâ Gen: An application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Bioinformatics, 13, 235 â 238. https://doi.org/10.1093/bioinformatics/13.3.235
dc.identifier.citedreferenceRannala, B. ( 2015 ). The art and science of species delimitation. Current Zoology, 61, 846 â 853. https://doi.org/10.1093/czoolo/61.5.846
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.