Show simple item record

Estimates of fish and coral larvae as nutrient subsidies to coral reef ecosystems

dc.contributor.authorAllgeier, Jacob E.
dc.contributor.authorSpeare, Kelly E.
dc.contributor.authorBurkepile, Deron E.
dc.date.accessioned2018-06-11T17:59:50Z
dc.date.available2019-08-01T19:53:23Zen
dc.date.issued2018-06
dc.identifier.citationAllgeier, Jacob E.; Speare, Kelly E.; Burkepile, Deron E. (2018). "Estimates of fish and coral larvae as nutrient subsidies to coral reef ecosystems." Ecosphere (6): n/a-n/a.
dc.identifier.issn2150-8925
dc.identifier.issn2150-8925
dc.identifier.urihttps://hdl.handle.net/2027.42/144262
dc.description.abstractNutrient subsidies are essential for the functioning of many ecosystems. A long‐standing conundrum in coral reef ecology is how these systems can be among the most productive globally, but persist in nutrient‐poor conditions. Here, we investigate the importance of the larvae of fishes and corals and gametes of corals as nutrient subsidies for coral reefs. We provide evidence that fish larvae may be an ecologically important source of exogenous nutrients. We found that at the high end of mean estimates of fish larval supply rates, larvae can replace the nutrients in the entire fish community (estimated from Caribbean coral reefs) in 28 and 434 d for nitrogen (N) and phosphorus, respectively. Coral larvae, on the other hand, appear to represent only a fraction of the nutrients supplied by the larval fish community. In contrast, coral gametes provide substantial pulses of recycled nutrients during synchronous spawning events. Within a single night, gametes from coral spawning events can produce nutrient fluxes that represent 13 and 64 times the amount of N and carbon, respectively, stored in coral reef fish communities. Our analysis suggests that larvae and/or gametes of fishes and corals may represent an important, but previously underappreciated, source of nutrients to coral reefs that warrant inclusion into models of nutrient dynamics and ecosystem function.
dc.publisherChapman and Hall
dc.publisherWiley Periodicals, Inc.
dc.subject.otherphosphorus
dc.subject.othervector
dc.subject.othersubsidy
dc.subject.otherCaribbean
dc.subject.otherecosystem ecology
dc.subject.otherFlorida Keys
dc.subject.otherFrench Polynesia
dc.subject.otherGreat Barrier Reef
dc.subject.otherMoorea
dc.subject.othernitrogen
dc.titleEstimates of fish and coral larvae as nutrient subsidies to coral reef ecosystems
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144262/1/ecs22216_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144262/2/ecs22216.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144262/3/ecs22216-sup-0002-AppendixS2.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144262/4/ecs22216-sup-0001-AppendixS1.pdf
dc.identifier.doi10.1002/ecs2.2216
dc.identifier.sourceEcosphere
dc.identifier.citedreferencePineda, J., J. Hare, and S. Sponaugle. 2007. Larval transport and dispersal in the coastal ocean and consequences for population connectivity. Oceanography 20: 22 – 39.
dc.identifier.citedreferenceLo‐Yat, A., S. D. Simpson, M. Meekan, D. Lecchini, E. Martinez, and R. Galzin. 2011. Extreme climatic events reduce ocean productivity and larval supply in a tropical reef ecosystem. Global Change Biology 17: 1695 – 1702.
dc.identifier.citedreferenceMeyer, J. L., E. T. Schultz, and G. S. Helfman. 1983. Fish schools – an asset to corals. Science 220: 1047 – 1049.
dc.identifier.citedreferenceMiller, K., and C. Mundy. 2003. Rapid settlement in broadcast spawning corals: implications for larval dispersal. Coral Reefs 22: 99 – 106.
dc.identifier.citedreferenceMuscatine, L., and J. W. Porter. 1977. Reef corals – mutualistic symbiosis adapted to nutrient‐poor environments. BioScience 27: 454 – 460.
dc.identifier.citedreferenceNaiman, R. J., R. E. Bilby, D. E. Schindler, and J. M. Helfield. 2002. Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. Ecosystems 5: 399 – 417.
dc.identifier.citedreferenceNolan, C. J., and B. S. Danilowicz. 2008. Advantages of using crest nets to sample presettlement larvae of reef fishes in the Caribbean Sea. Fisheries Bulletin 106: 213 – 221.
dc.identifier.citedreferenceOdum, H. T., and E. P. Odum. 1955. Trohic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecological Monographs 25: 291 – 320.
dc.identifier.citedreferencePadilla‐Gamiño, J. L., et al. 2013. Are all eggs created equal? A case study from the Hawaiian reef‐building coral Montipora capitata. Coral Reefs 32: 137 – 152.
dc.identifier.citedreferencePepin, P. 1995. An analysis of the length‐weight relationship of larval fish: limitations of the general allometric model. Fishery Bulletin 93: 419 – 426.
dc.identifier.citedreferencePfeiler, E., V. A. Lindley, and J. J. Elser. 1998. Elemental (C, N and P) analysis of metamorphosing bonefish ( Albula sp.) leptocephali: relationship to catabolism of endogenous organic compounds, tissue remodeling, and feeding ecology. Marine Biology 132: 21 – 28.
dc.identifier.citedreferencePolis, G. A., W. Anderson, and R. D. Holt. 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics 28: 289 – 316.
dc.identifier.citedreferencePratchett, M. S., N. Gust, G. Goby, and S. O. Klanten. 2001. Consumption of coral propagules represents a significant trophic link between corals and reef fish. Coral Reefs 20: 13 – 17.
dc.identifier.citedreferenceRoberts, C. M. 1997. Connectivity and management of Caribbean coral reefs. Science (New York, N.Y.) 278: 1454 – 1457.
dc.identifier.citedreferenceSale, P. F. 2004. Connectivity, recruitment variation, and the structure of reef fish communities. Integrative and Comparative Biology 44: 390 – 399.
dc.identifier.citedreferenceShantz, A. A., M. C. Ladd, E. Schrack, and D. E. Burkepile. 2015. Fish‐derived nutrient hotspots shape coral reef benthic communities. Ecological Applications 25: 2142 – 2152.
dc.identifier.citedreferenceSponaugle, S., and R. Cowen. 1996. Nearshore patterns of coral reef fish larval supply to Barbados, West Indies. Marine Ecology Progress Series 133: 13 – 28.
dc.identifier.citedreferenceSponaugle, S., J. Fortuna, K. Grorud, and T. Lee. 2003. Dynamics of larval fish assemblages over a shallow coral reef in the Florida Keys. Marine Biology 143: 175 – 189.
dc.identifier.citedreferenceSubalusky, A. L., C. L. Dutton, E. J. Rosi, and D. M. Post. 2017. Annual mass drownings of the Serengeti wildebeest migration influence nutrient cycling and storage in the Mara River. Proceedings of the National Academy of Sciences of the USA 114: 7647 – 7652.
dc.identifier.citedreferenceSzmant, A. M. 2002. Nutrient enrichment on coral reefs: Is it a major cause of coral reef decline? Estuaries 25: 743 – 766.
dc.identifier.citedreferenceValles, H., S. Sponaugle, and H. A. Oxenford. 2001. Larval supply to a marine reserve and adjacent fished area in the Soufrière Marine Management Area, St Lucia, West Indies. Journal of Fish Biology 59: 152 – 177.
dc.identifier.citedreferencevan Woesik, R., W. J. Scott, and R. B. Aronson. 2014. Lost opportunities: Coral recruitment does not translate to reef recovery in the Florida Keys. Marine Pollution Bulletin 88: 110 – 117.
dc.identifier.citedreferenceWiedenmann, J., C. D’Angelo, E. G. Smith, A. N. Hunt, F. E. Legiret, A. D. Postle, and E. P. Achterberg. 2013. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nature Climate Change 3: 160 – 164.
dc.identifier.citedreferenceWild, C., C. Janzen, U. Struck, O. Hoegh‐Guldberg, and M. Huettel. 2008. Biogeochemical responses following coral mass spawning on the Great Barrier Reef: pelagic–benthic coupling. Coral Reefs 27: 123 – 132.
dc.identifier.citedreferenceWild, C., R. Tollrian, and M. Huettel. 2004. Rapid recycling of coral mass‐spawning products in permeable reef sediments. Marine Ecology Progress 271: 159 – 166.
dc.identifier.citedreferenceWilson, J. R., and P. L. Harrison. 1998. Settlement‐competency periods of larvae of three species of scleractinian corals. Marine Biology 131: 339 – 345.
dc.identifier.citedreferenceYang, L. H., J. L. Bastow, K. O. Spence, and A. N. Wright. 2008. What can we learn from resource pulses? Ecology 89: 621 – 634.
dc.identifier.citedreferenceAdjeroud, M., L. Penin, and A. Carroll. 2007. Spatio‐temporal heterogeneity in coral recruitment around Moorea, French Polynesia: implications for population maintenance. Journal of Experimental Marine Biology and Ecology 341: 204 – 218.
dc.identifier.citedreferenceAllgeier, J. E., D. E. Burkepile, and C. A. Layman. 2017. Animal pee in the sea: consumer‐mediated nutrient dynamics in the world’s changing oceans. Global Change Biology 23: 2166 – 2178.
dc.identifier.citedreferenceAllgeier, J. E., C. A. Layman, P. J. Mumby, and A. D. Rosemond. 2014. Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems. Global Change Biology 20: 2459 – 2472.
dc.identifier.citedreferenceAllgeier, J. E., C. A. Layman, P. J. Mumby, and A. D. Rosemond. 2015. Biogeochemical implications of biodiversity loss across regional gradients of coastal marine ecosystems. Ecological Monographs 85: 117 – 132.
dc.identifier.citedreferenceAllgeier, J. E., A. Valdivia, C. Cox, and C. A. Layman. 2016. Fishing down nutrients on coral reefs. Nature Communications 7: 1 – 5.
dc.identifier.citedreferenceAnderson, W. B., and G. A. Polis. 1999. Nutrient fluxes from water to land: Seabirds affect plant nutrient status on Gulf of California islands. Oecologia 118: 324 – 332.
dc.identifier.citedreferenceAndrello, M., D. Mouillot, S. Somot, W. Thuiller, and S. Manel. 2015. Additive effects of climate change on connectivity between marine protected areas and larval supply to fished areas. Diversity and Distributions 21: 139 – 150.
dc.identifier.citedreferenceBarile, P. J., and B. E. Lapointe. 2005. Atmospheric nitrogen deposition from a remote source enriches macroalgae in coral reef ecosystems near Green Turtle Cay, Abacos, Bahamas. Marine Pollution Bulletin 50: 1262 – 1272.
dc.identifier.citedreferenceConnolly, S. R., and A. H. Baird. 2010. Estimating dispersal potential for marine larvae: dynamic models applied to scleractinian corals. Ecology 91: 3572 – 3583.
dc.identifier.citedreferenceCoombs, S. H., D. V. P. Conway, S. A. Morley, and N. C. Halliday. 1999. Carbon content and nutritional condition of sardine larvae ( Sardina pilchardus ) off the Atlantic coast of Spain. Marine Biology 134: 367 – 373.
dc.identifier.citedreferenceD’Angelo, C., and J. Wiedenmann. 2014. Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal management and reef survival. Current Opinion in Environmental Sustainability 7: 82 – 93.
dc.identifier.citedreferenceDeAngelis, D. L. 1992. Dynamics of nutrient cycling and food webs. Chapman and Hall, London, UK.
dc.identifier.citedreferenceDoherty, P. 1987. Light‐traps: selective but useful devices for quantifying the distributions and abundances of larval fishes. Bulletin of Marine Science 41: 423 – 431.
dc.identifier.citedreferenceDufour, V., and R. Galzin. 1993. Colonization patterns of reef fish larvae to the lagoon at Moorea Island, French Polynesia. Marine Ecology Progress Series 102: 143 – 152.
dc.identifier.citedreferenceDufour, V., E. Riclet, and A. Lo‐Yat. 1996. Colonization of reef fishes at Moorea Island, French Polynesia: temporal and spatial variation of the larval flux. Marine and Freshwater Research 47: 413.
dc.identifier.citedreferenceEdmunds, P. J., J. J. Leichter, and M. Adjeroud. 2010. Landscape‐scale variation in coral recruitment in Moorea, French Polynesia. Marine Ecology Progress Series 414: 75 – 89.
dc.identifier.citedreferenceEyre, B. D., R. N. Glud, and N. Patten. 2008. Mass coral spawning: a natural large‐scale nutrient addition experiment. Limnology and Oceanography 53: 997 – 1013.
dc.identifier.citedreferenceFerrier‐Pages, C., C. Godinot, C. D’Angelo, J. Wiedenmann, and R. Grover. 2016. Phosphorus metabolism of reef organisms with algal symbionts. Ecological Monographs 86: 262 – 277.
dc.identifier.citedreferenceFigueiredo, J., A. H. Baird, M. F. Cohen, J.‐F. Flot, T. Kamiki, T. Meziane, M. Tsuchiya, and H. Yamasaki. 2012. Ontogenetic change in the lipid and fatty acid composition of scleractinian coral larvae. Coral Reefs 31: 613 – 619.
dc.identifier.citedreferenceGleason, M. G. 1996. Coral recruitment in Moorea, French Polynesia: the importance of patch type and temporal variation. Journal of Experimental Marine Biology and Ecology 207: 79 – 101.
dc.identifier.citedreferenceGrorud‐Colvert, K., and S. Sponaugle. 2009. Larval supply and juvenile recruitment of coral reef fishes to marine reserves and non‐reserves of the upper Florida Keys, USA. Marine Biology 156: 277 – 288.
dc.identifier.citedreferenceHarii, S., K. Nadaoka, M. Yamamoto, and K. Iwao. 2007. Temporal changes in settlement, lipid content and lipid composition of larvae of the spawning hermatypic coral Acropora tenuis. Marine Ecology Progress Series 346: 89 – 96.
dc.identifier.citedreferenceHatcher, B. G. 1988. Coral reef primary productivity – A beggars banquet. Trends in Ecology & Evolution 3: 106 – 111.
dc.identifier.citedreferenceHughes, T. P., A. H. Baird, E. A. Dinsdale, N. A. Moltschaniwskyj, M. S. Pratchett, J. E. Tanner, and B. L. Willis. 1999. Patterns of recruitment and abundance of corals along the Great Barrier Reef. Nature 397: 59 – 63.
dc.identifier.citedreferenceHughes, T. P., A. H. Baird, E. A. Dinsdale, N. A. Moltschaniwskyj, M. S. Pratchett, J. E. Tanner, and B. L. Willis. 2000. Supply‐side ecology works both ways: the link between benthic adults, fecundity, and larval recruits. Ecology 81: 2241.
dc.identifier.citedreferenceHumanes, A., and C. Bastidas. 2015. In situ settlement rates and early survivorship of hard corals: a good year for a Caribbean reef. Marine Ecology Progress Series 539: 139 – 151.
dc.identifier.citedreferenceKopp, C., I. Domart‐Coulon, D. Barthelemy, and A. Meibom. 2016. Nutritional input from dinoflagellate symbionts in reef‐building corals is minimal during planula larval life stage. Science Advances 2: e1500681.
dc.identifier.citedreferenceLo‐Yat, A., M. Meekan, J. Carleton, and R. Galzin. 2006. Large‐scale dispersal of the larvae of nearshore and pelagic fishes in the tropical oceanic waters of French Polynesia. Marine Ecology Progress Series 325: 195 – 203.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.