Show simple item record

Standardized genetic diversityâ life history correlates for improved genetic resource management of Neotropical trees

dc.contributor.authorLowe, Andrew J.
dc.contributor.authorBreed, Martin F.
dc.contributor.authorCaron, Henri
dc.contributor.authorColpaert, Nathalie
dc.contributor.authorDick, Christopher
dc.contributor.authorFinegan, Bryan
dc.contributor.authorGardner, Mike
dc.contributor.authorGheysen, Godelieve
dc.contributor.authorGribel, Rogério
dc.contributor.authorHarris, J. Berton C.
dc.contributor.authorKremer, Antoine
dc.contributor.authorLemes, Maristerra R.
dc.contributor.authorMargis, Rogerio
dc.contributor.authorNavarro, Carlos M.
dc.contributor.authorSalgueiro, Fabiano
dc.contributor.authorVillalobos‐barrantes, Heidy M.
dc.contributor.authorCavers, Stephen
dc.date.accessioned2018-06-11T17:59:58Z
dc.date.available2019-08-01T19:53:23Zen
dc.date.issued2018-06
dc.identifier.citationLowe, Andrew J.; Breed, Martin F.; Caron, Henri; Colpaert, Nathalie; Dick, Christopher; Finegan, Bryan; Gardner, Mike; Gheysen, Godelieve; Gribel, Rogério ; Harris, J. Berton C.; Kremer, Antoine; Lemes, Maristerra R.; Margis, Rogerio; Navarro, Carlos M.; Salgueiro, Fabiano; Villalobos‐barrantes, Heidy M. ; Cavers, Stephen (2018). "Standardized genetic diversityâ life history correlates for improved genetic resource management of Neotropical trees." Diversity and Distributions 24(6): 730-741.
dc.identifier.issn1366-9516
dc.identifier.issn1472-4642
dc.identifier.urihttps://hdl.handle.net/2027.42/144270
dc.description.abstractAimLife history traits and range size are key correlates of genetic diversity in trees. We used a standardized sampling protocol to explore how life history traits and range size relate to the magnitude, variance and structuring (both betweenâ and withinâ population) of genetic diversity in Neotropical tree species.LocationThe NeotropicsMethodsWe present a metaâ analysis of new population genetic data generated for 23 Neotropical tree species (=2,966 trees, 86 populations) across a shared and broad geographic area. We compared established population genetic metrics across these species (e.g., genetic diversity, population structure, fineâ scale genetic structure), plus we estimated the rarely used variance in genetic diversity among populations. We used a multivariate, maximum likelihood, multimodel inference approach to explore the relative influence of life history traits and range size on patterns of neutral genetic diversity.ResultsWe found that pioneer and narrow range species had lower levels but greater variance in genetic diversityâ signs of founder effects and stronger genetic drift. Animalâ dispersed species had lower population differentiation, indicating extensive gene flow. Abiotically dispersed and pioneer species had stronger fineâ scale genetic structure, suggesting restricted seed dispersal and family cohort establishment.Main conclusionsOur multivariable and multispecies approach allows ecologically relevant conclusions, since knowing whether one parameter has an effect, or one species shows a response in isolation, is dependent on the combination of traits expressed by a species. Our study demonstrates the influence of ecological processes on the distribution of genetic variation in tropical trees, and will help guide genetic resource management, and contribute to predicting the impacts of land use change.
dc.publisherWiley Periodicals, Inc.
dc.publisherElsevier Science Publishing
dc.subject.othergene flow
dc.subject.othereffective population size
dc.subject.otherfounder effects
dc.subject.otherseed dispersal
dc.subject.othergenetic resource management
dc.titleStandardized genetic diversityâ life history correlates for improved genetic resource management of Neotropical trees
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144270/1/ddi12716_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144270/2/ddi12716.pdf
dc.identifier.doi10.1111/ddi.12716
dc.identifier.sourceDiversity and Distributions
dc.identifier.citedreferenceLoiselle, B. A., Sork, V. L., Nason, J., & Graham, C. ( 1995 ). Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). American Journal of Botany, 82, 1420 â 1425. https://doi.org/10.2307/2445869
dc.identifier.citedreferenceFordham, D. A., Brook, B. W., Moritz, C., & Noguésâ Bravo, D. ( 2014 ). Better forecasts of range dynamics using genetic data. Trends in ecology & evolution, 29, 436 â 443. https://doi.org/10.1016/j.tree.2014.05.007
dc.identifier.citedreferenceForget, P.â M. ( 1992 ). Regeneration ecology of Eperua grandiflora (Caesalpiniaceae), a largeâ seeded tree in French Guiana. Biotropica, 24, 146 â 156. https://doi.org/10.2307/2388668
dc.identifier.citedreferenceGentry, A. H. ( 1986 ). Endemism in tropical versus temperate plant communities. In M. Soule (Ed.) Conservation biology: The science of scarcity and diversity (pp. 153 â 181 ). Sunderland, MA: Sinaner.
dc.identifier.citedreferenceGiam, X., & Olden, J. D. ( 2016 ). Quantifying variable importance in a multimodel inference framework. Methods in Ecology and Evolution, 7, 388 â 397. https://doi.org/10.1111/2041-210X.12492
dc.identifier.citedreferenceHamrick, J., & Godt, M. ( 1990 ). Allozyme diversity in plant species. In A. H. D. Brown, M. T. Clegg, A. L. Kahler, & B. S. Weir (Eds.), Plant population genetics, breeding, and genetic resources (pp. 43 â 63 ). Sunderland, MA: Sinauer Associates Inc..
dc.identifier.citedreferenceHamrick, J. L., & Godt, M. J. W. ( 1996 ). Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society Bâ Biological Sciences, 351, 1291 â 1298. https://doi.org/10.1098/rstb.1996.0112
dc.identifier.citedreferenceHamrick, J. L., Godt, M. J. W., & Shermanâ Broyles, S. L. ( 1992 ). Factors influencing levels of genetic diversity in woody plant species. New Forests, 6, 95 â 124. https://doi.org/10.1007/BF00120641
dc.identifier.citedreferenceHamrick, J. L., Murawski, D. A., & Nason, J. D. ( 1993 ). The influence of seed dispersal mechanisms on the genetic structure of tropical tree populations. Vegetatio, 107, 281 â 297.
dc.identifier.citedreferenceHarata, T., Nanami, S., Yamakura, T., Matsuyama, S., Chong, L., Diway, B. M., â ¦ Itoh, A. ( 2012 ). Fineâ scale spatial genetic structure of ten dipterocarp tree species in a Bornean rain forest. Biotropica, 44, 586 â 594. https://doi.org/10.1111/j.1744-7429.2011.00836.x
dc.identifier.citedreferenceHardy, O. J., Maggia, L., Bandou, E., Breyne, P., Caron, H., Chevallier, M. H., â ¦ Degen, B. ( 2006 ). Fineâ scale genetic structure and gene dispersal inferences in 10 Neotropical tree species. Molecular Ecology, 15, 559 â 571.
dc.identifier.citedreferenceHardy, O. J., & Vekemans, X. ( 2002 ). SPAGeDi: A versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes, 2, 618 â 620. https://doi.org/10.1046/j.1471-8286.2002.00305.x
dc.identifier.citedreferenceHowe, H. F., & Smallwood, J. ( 1982 ). Ecology of seed dispersal. Annual Review of Ecology and Systematics, 13, 201 â 228. https://doi.org/10.1146/annurev.es.13.110182.001221
dc.identifier.citedreferenceHuc, R., Ferhi, A., & Guehl, J. M. ( 1994 ). Pioneer and late stage tropical rainforest tree species (French Guiana) growing under common conditions differ in leaf gas exchange regulation, carbon isotope discrimination and leaf water potential. Oecologia, 99, 297 â 305. https://doi.org/10.1007/BF00627742
dc.identifier.citedreferenceIPBES ( 2014 ). Plenary of the Intergovernmental Scienceâ Policy Platform on Biodiversity and Ecosystem Services. Antalya, Turkey, 9â 14 December 2013,
dc.identifier.citedreferenceJones, F., Chen, J., Weng, G., & Hubbell, S. ( 2005 ). A genetic evaluation of seed dispersal in the neotropical tree Jacaranda copaia (Bignoniaceae). American Naturalist, 166, 543 â 555. https://doi.org/10.1086/491661
dc.identifier.citedreferenceJump, A., & Peñuelas, J. ( 2007 ). Extensive spatial genetic structure revealed by AFLP but not SSR molecular markers in the windâ pollinated tree, Fagus sylvatica. Molecular Ecology, 16, 925 â 936.
dc.identifier.citedreferenceKremer, A., Caron, H., Cavers, S., Colpaert, N., Gheysen, G., Gribel, R., â ¦ Salgueiro, F. ( 2005 ). Monitoring genetic diversity in tropical trees with multilocus dominant markers. Heredity, 95, 274 â 280. https://doi.org/10.1038/sj.hdy.6800738
dc.identifier.citedreferenceLoveless, M. D., & Hamrick, J. L. ( 1984 ). Ecological determinants of genetic structure in plant populations. Annual Review of Ecology and Systematics, 15, 65 â 95. https://doi.org/10.1146/annurev.es.15.110184.000433
dc.identifier.citedreferenceLowe, A. J., Cavers, S., Boshier, D., Breed, M. F., & Hollingsworth, P. M. ( 2015 ). The resilience of forest fragmentation genetics â no longer a paradox â we were just looking in the wrong place. Heredity, 115, 97 â 99. https://doi.org/10.1038/hdy.2015.40
dc.identifier.citedreferenceMcCallum, K. P., Guerin, G. R., Breed, M. F., & Lowe, A. J. ( 2014 ). Combining population genetics, species distribution modelling and field assessments to understand a species vulnerability to climate change. Austral Ecology, 39, 17 â 28. https://doi.org/10.1111/aec.12041
dc.identifier.citedreferenceMeirmans, P. G., Goudet, J., IntraBioDiv, C., & Gaggiotti, O. E. ( 2011 ). Ecology and life history affect different aspects of the population structure of 27 highâ alpine plants. Molecular Ecology, 20, 3144 â 3155. https://doi.org/10.1111/j.1365-294X.2011.05164.x
dc.identifier.citedreferenceMontoya, D., Zavala, M. A., Rodríguez, M. A., & Purves, D. W. ( 2008 ). Animal versus wind dispersal and the robustness of tree species to deforestation. Science, 320, 1502 â 1504. https://doi.org/10.1126/science.1158404
dc.identifier.citedreferenceNybom, H., & Bartish, I. V. ( 2000 ). Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspectives in Plant Ecology, Evolution and Systematics, 3, 93 â 114. https://doi.org/10.1078/1433-8319-00006
dc.identifier.citedreferencePetit, R. J., Duminil, J., Fineschi, S., Hampe, A., Salvini, D., & Vendramin, G. G. ( 2005 ). Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Molecular Ecology, 14, 689 â 701.
dc.identifier.citedreferenceR Core Team ( 2017 ). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
dc.identifier.citedreferenceSchoen, D. J., & Brown, A. ( 1991 ). Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proceedings of the National Academy of Sciences, 88, 4494 â 4497. https://doi.org/10.1073/pnas.88.10.4494
dc.identifier.citedreferenceSgrò, C. M., Lowe, A. J., & Hoffmann, A. A. ( 2011 ). Building evolutionary resilience for conserving biodiversity under climate change. Evolutionary Applications, 4, 326 â 337. https://doi.org/10.1111/j.1752-4571.2010.00157.x
dc.identifier.citedreferenceShapiro, S. S., & Wilk, M. B. ( 1965 ). An analysis of variance test for normality (complete samples). Biometrika, 52, 591 â 611. https://doi.org/10.1093/biomet/52.3-4.591
dc.identifier.citedreferenceSilva, A. L. G. D., & Pinheiro, M. C. B. ( 2009 ). Reproductive success of four species of Eugenia L (Myrtaceae). Acta Botanica Brasilica, 23, 526 â 534. https://doi.org/10.1590/S0102-33062009000200024
dc.identifier.citedreferenceSuding, K., Higgs, E., Palmer, M., Callicott, J. B., Anderson, C. B., Baker, M., â ¦ Schwartz, K. Z. S. ( 2015 ). Committing to ecological restoration. Science, 348, 638 â 640. https://doi.org/10.1126/science.aaa4216
dc.identifier.citedreferenceSwab, R. M., Regan, H. M., Keith, D. A., Regan, T. J., & Ooi, M. K. J. ( 2012 ). Niche models tell half the story: Spatial context and lifeâ history traits influence species responses to global change. Journal of Biogeography, 39, 1266 â 1277. https://doi.org/10.1111/j.1365-2699.2012.02690.x
dc.identifier.citedreferenceVekemans, X. ( 2002 ). AFLPâ SURV version 1.0. Laboratoire de Genetique et Ecologie Vegetale. Universite Libre de Bruxelles, Belgium,
dc.identifier.citedreferenceVekemans, X., & Hardy, O. J. ( 2004 ). New insights from fineâ scale spatial genetic structure analyses in plant populations. Molecular Ecology, 13, 921 â 935. https://doi.org/10.1046/j.1365-294X.2004.02076.x
dc.identifier.citedreferenceVos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., â ¦ Zabeau, M. ( 1995 ). AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research, 23, 4407 â 4414. https://doi.org/10.1093/nar/23.21.4407
dc.identifier.citedreferenceWard, M., Dick, C. W., Gribel, R., & Lowe, A. J. ( 2005 ). To self, or not to selfâ ¦ A review of outcrossing and pollenâ mediated gene flow in neotropical trees. Heredity, 95, 246 â 254. https://doi.org/10.1038/sj.hdy.6800712
dc.identifier.citedreferenceBorn, C., Kjellberg, F., Chevallier, M.â H., Vignes, H., Dikangadissi, J.â T., Sanguié, J., â ¦ Hossaertâ McKey, M. ( 2008 ). Colonization processes and the maintenance of genetic diversity: Insights from a pioneer rainforest tree, Aucoumea klaineana. Proceedings of the Royal Society of London B: Biological Sciences, 275, 2171 â 2179. https://doi.org/10.1098/rspb.2008.0446
dc.identifier.citedreferenceBreed, M. F., Mortimer, P. E., & Lowe, A. J. ( 2016 ). Restoration: â Garden of Edenâ unrealistic. Nature, 533, 469. https://doi.org/10.1038/533469d
dc.identifier.citedreferenceBreed, M. F., Ottewell, K. M., Gardner, M. G., Marklund, M. H. K., Dormontt, E. D., & Lowe, A. J. ( 2015 ). Mating patterns and pollinator mobility are critical traits in forest fragmentation genetics. Heredity, 115, 108 â 114. https://doi.org/10.1038/hdy.2013.48
dc.identifier.citedreferenceBreed, M. F., Stead, M. G., Ottewell, K. M., Gardner, M. G., & Lowe, A. J. ( 2013 ). Which provenance and where? Seed sourcing strategies for revegetation in a changing environment. Conservation Genetics, 14, 1 â 10. https://doi.org/10.1007/s10592-012-0425-z
dc.identifier.citedreferenceBreusch, T. S., & Pagan, A. R. ( 1979 ). A simple test for heteroscedasticity and random coefficient variation. Econometrica: Journal of the Econometric Society, 47, 1287 â 1294. https://doi.org/10.2307/1911963
dc.identifier.citedreferenceBroadhurst, L. M., Breed, M. F., Lowe, A. J., Bragg, J., Catullo, R., Coates, D., â ¦ Byrne, M. ( 2017 ). Genetic diversity and structure of the Australian flora. Diversity and Distributions, 23, 41 â 52. https://doi.org/10.1111/ddi.12505
dc.identifier.citedreferenceBroadhurst, L. M., Jones, T. A., Smith, F. S., North, T., & Guja, L. ( 2016 ). Maximizing seed resources for restoration in an uncertain future. BioScience, 66, 73 â 79. https://doi.org/10.1093/biosci/biv155
dc.identifier.citedreferenceBrown, A., & Weir, B. ( 1983 ). Measuring genetic variability in plant populations. In S. D. Tanksley, & T. J. Orton (Eds.), Isozymes in plant genetics and breeding, part A (pp. 219 â 239 ). Amsterdam, The Netherlands: Elsevier Science Publishing.
dc.identifier.citedreferenceBurnham, K. P., & Andersen, D. R. ( 2002 ). Model selection and multimodel inference, 2nd ed.. New York, NY: Springer.
dc.identifier.citedreferenceCade, B. S. ( 2015 ). Model averaging and muddled multimodel inferences. Ecology, 96, 2370 â 2382. https://doi.org/10.1890/14-1639.1
dc.identifier.citedreferenceCavers, S., Degen, B., Caron, H., Lemes, M. R., Margis, R., Salgueiro, F., & Lowe, A. J. ( 2005 ). Optimal sampling strategy for estimation of spatial genetic structure in tree populations. Heredity, 95, 281 â 289. https://doi.org/10.1038/sj.hdy.6800709
dc.identifier.citedreferenceCavers, S., & Dick, C. W. ( 2013 ). Phylogeography of Neotropical trees. Journal of Biogeography, 40, 615 â 617. https://doi.org/10.1111/jbi.12097
dc.identifier.citedreferenceCrawley, M. ( 2007 ). The R book. Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470515075
dc.identifier.citedreferenceDavies, S., Cavers, S., Finegan, B., Navarro, C., & Lowe, A. ( 2010 ). Genetic consequences of multigenerational and landscape colonisation bottlenecks for a Neotropical forest pioneer tree, Vochysia ferruginea. Tropical Plant Biology, 3, 14 â 27. https://doi.org/10.1007/s12042-010-9040-7
dc.identifier.citedreferenceDegen, B., Caron, H., Bandou, E., Maggia, L., Chevallier, M. H., Leveau, A., & Kremer, A. ( 2001 ). Fineâ scale spatial genetic structure of eight tropical tree species as analysed by RAPDs. Heredity, 87, 497 â 507. https://doi.org/10.1046/j.1365-2540.2001.00942.x
dc.identifier.citedreferenceDick, C., Hardy, O., Jones, F., & Petit, R. ( 2008 ). Spatial scales of pollen and seedâ mediated gene flow in tropical rain forest trees. Tropical Plant Biology, 1, 20 â 33. https://doi.org/10.1007/s12042-007-9006-6
dc.identifier.citedreferenceDick, C. W., & Heuertz, M. ( 2008 ). The complex biogeographic history of a widespread tropical tree species. Evolution, 62, 2760 â 2774. https://doi.org/10.1111/j.1558-5646.2008.00506.x
dc.identifier.citedreferenceDick, C. W., Lewis, S. L., Maslin, M., & Bermingham, E. ( 2013 ). Neogene origins and implied warmth tolerance of Amazon tree species. Ecology and evolution, 3, 162 â 169. https://doi.org/10.1002/ece3.441
dc.identifier.citedreferenceDormontt, E. E., Boner, M., Braun, B., Breulmann, G., Degen, B., Espinoza, E., â ¦ Koch, G. ( 2015 ). Forensic timber identification: It’s time to integrate disciplines to combat illegal logging. Biological Conservation, 191, 790 â 798. https://doi.org/10.1016/j.biocon.2015.06.038
dc.identifier.citedreferenceDuminil, J., Fineschi, S., Hampe, A., Jordano, P., Salvini, D., Vendramin, G. G., & Petit, R. J. ( 2007 ). Can population genetic structure be predicted from lifeâ history traits? American Naturalist, 169, 662 â 672.
dc.identifier.citedreferenceFAO ( 2014 ). The state of the world’s forest genetic resources. In. Commission on Genetic Resources for Food and Agriculture Organization of the United Nations, Rome.
dc.identifier.citedreferenceFlores, O., Gourletâ Fleury, S., & Picard, N. ( 2006 ). Local disturbance, forest structure and dispersal effects on sapling distribution of lightâ demanding and shadeâ tolerant species in a French Guianian forest. Acta Oecologica, 29, 141 â 154. https://doi.org/10.1016/j.actao.2005.08.007
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.