Show simple item record

Templateâ Directed Solidification of Eutectic Optical Materials

dc.contributor.authorKulkarni, Ashish A.
dc.contributor.authorKohanek, Julia
dc.contributor.authorTyler, Kaitlin I.
dc.contributor.authorHanson, Erik
dc.contributor.authorKim, Dong‐uk
dc.contributor.authorThornton, Katsuyo
dc.contributor.authorBraun, Paul V.
dc.date.accessioned2018-06-11T18:00:05Z
dc.date.available2019-08-01T19:53:23Zen
dc.date.issued2018-06
dc.identifier.citationKulkarni, Ashish A.; Kohanek, Julia; Tyler, Kaitlin I.; Hanson, Erik; Kim, Dong‐uk ; Thornton, Katsuyo; Braun, Paul V. (2018). "Templateâ Directed Solidification of Eutectic Optical Materials." Advanced Optical Materials 6(11): n/a-n/a.
dc.identifier.issn2195-1071
dc.identifier.issn2195-1071
dc.identifier.urihttps://hdl.handle.net/2027.42/144275
dc.description.abstractMesostructured materials can exhibit enhanced lightâ matter interactions, which can become particularly strong when the characteristic dimensions of the structure are similar to or smaller than the wavelength of light. For controlling visible to nearâ infrared wavelengths, the small characteristic dimensions of the required structures usually demand fabrication by sophisticated lithographic techniques. However, these fabrication methods are restricted to producing 2D and a limited range of 3D structures. When a large volume of structured material is required, the primary approach is to use selfâ assembly, and the literature includes many examples of mesostructured optical materials formed via selfâ assembly. However, selfâ organized materials almost always contain structural imperfections which limit their performance. Emerging work, however, is showing that by performing selfâ assembly within a guiding template, the defect density in selfâ assembled structures can be reduced. Particularly interesting is the possibility that utilizing a template can result in the formation of mesostructures not present in either the template or the native selfâ organizing material. In this review, particular emphasis is placed on emerging results showing the effect of mesoscale templates on the microstructure of solidifying eutectic materials, with a specific focus on how templateâ directed solidification may be a powerful approach for fabricating optically active structures, including optical metamaterials.Templateâ directed assembly gives access to structures that are not present in either the template or the native selfâ organizing material. Proofâ ofâ concept works on templateâ directed selfâ organization of solidifying eutectic materials have exhibited intriguing results for photonics and optical metamaterials. This article provides a review of the challenges and opportunities of this technique for forming optically powerful structures.
dc.publisherPrinceton University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherphotonic crystals
dc.subject.othertemplateâ directed assembly
dc.subject.othermetamaterials
dc.subject.othereutectics
dc.subject.otherorganized systems
dc.titleTemplateâ Directed Solidification of Eutectic Optical Materials
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144275/1/adom201800071_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144275/2/adom201800071.pdf
dc.identifier.doi10.1002/adom.201800071
dc.identifier.sourceAdvanced Optical Materials
dc.identifier.citedreferenceS. G. Kim, W. T. Kim, T. Suzuki, M. Ode, J. Cryst. Growth 2004, 261, 135.
dc.identifier.citedreferenceM. Serefoglu, R. E. Napolitano, Acta Mater. 2008, 56, 3862.
dc.identifier.citedreferenceS.â H. Chen, C.â C. Chen, Z. P. Luo, C.â G. Chao, Mater. Lett. 2009, 63, 1165.
dc.identifier.citedreferenceS. H. Chen, C. C. Chen, C. G. Chao, J. Alloys Compd. 2009, 481, 270.
dc.identifier.citedreferenceU. Hecht, L. Gránásy, T. Pusztai, B. Böttger, M. Apel, V. Witusiewicz, L. Ratke, J. De Wilde, L. Froyen, D. Camel, B. Drevet, G. Faivre, S. Fries, B. Legendre, S. Rex, Mater. Sci. Eng. R 2004, 46, 1.
dc.identifier.citedreferenceJ. Hunt, K. Jackson, Trans. Metall. Soc. AIME 1967, 239, 864.
dc.identifier.citedreferenceM. Khorasaninejad, F. Capasso, Science 2017, 358, 1146.
dc.identifier.citedreferenceA. S. Powers, H. G. Liao, S. N. Raja, N. D. Bronstein, A. P. Alivisatos, H. Zheng, Nano Lett. 2017, 17, 15.
dc.identifier.citedreferenceM. Steinhart, J. Wendorff, A. Greiner, R. Wehrspohn, K. Nielsch, J. Schilling, J. Choi, U. Gösele, Science 2002, 296, 1997.
dc.identifier.citedreferenceV. M. Shalaev, Nat. Photonics 2007, 1, 41.
dc.identifier.citedreferenceM. Maldovan, E. L. Thomas, Nat. Mater. 2004, 3, 593.
dc.identifier.citedreferenceA. F. Oskooi, J. Joannopoulos, S. G. Johnson, Opt. Express 2009, 17, 10082.
dc.identifier.citedreferenceH. Men, K. Y. Lee, R. M. Freund, J. Peraire, S. G. Johnson, Opt. Express 2014, 22, 22632.
dc.identifier.citedreferenceA. Cerjan, S. Fan, Phys. Rev. A 2017, 96, 051802.
dc.identifier.citedreferenceS. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, Nature 1998, 394, 251.
dc.identifier.citedreferenceF. Costa, A. Monorchio, G. Manara, Appl. Comput. Electromagn. Soc. J. 2014, 29, 960.
dc.identifier.citedreferenceA. Fallahi, D.Sc. Thesis, Swiss Federal Institute of Technology, Zurich 2010.
dc.identifier.citedreferenceY. Chen, J. Geddes III, J. Lee, P. Braun, P. Wiltzius, Appl. Phys. Lett. 2007, 91, 241103.
dc.identifier.citedreferenceS. Peng, R. Zhang, V. H. Chen, E. T. Khabiboulline, P. Braun, H. A. Atwater, ACS Photonics 2016, 3, 1131.
dc.identifier.citedreferenceR. Zhang, H. Ning, N. A. Krueger, D. Baconâ Brown, P. V. Braun, Adv. Opt. Mater. 2016, 4, 1533.
dc.identifier.citedreferenceM. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, C. M. Soukoulis, Nat. Mater. 2004, 3, 444.
dc.identifier.citedreferenceS. Kawata, H.â B. Sun, T. Tanaka, K. Takada, Nature 2001, 412, 697.
dc.identifier.citedreferenceM. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, C. Roquesâ Carmes, I. Mishra, F. Capasso, IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1.
dc.identifier.citedreferenceG. W. Yang, G. P. Wu, X. Chen, S. Xiong, C. G. Arges, S. Ji, P. F. Nealey, X. B. Lu, D. J. Darensbourg, Z. K. Xu, Nano Lett. 2017, 17, 1233.
dc.identifier.citedreferenceN. A. Krueger, A. L. Holsteen, S.â K. Kang, C. R. Ocier, W. Zhou, G. Mensing, J. A. Rogers, M. L. Brongersma, P. V. Braun, Nano Lett. 2016, 16, 7402.
dc.identifier.citedreferenceZ. Y. Deng, H. Fernandes, J. Ventura, S. Kannan, J. M. Ferreira, J. Am. Ceram. Soc. 2007, 90, 1265.
dc.identifier.citedreferenceB. Gallinet, J. Butet, O. J. F. Martin, Laser Photonics Rev. 2015, 9, 577.
dc.identifier.citedreferenceJ. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, USA 2011.
dc.identifier.citedreferenceJ. D. Joannopoulos, P. R. Villeneuve, S. Fan, Nature 1997, 386, 143.
dc.identifier.citedreferenceM. C. Teich, B. Saleh, Fundamentals of Photonics, Vol. 3, Wileyâ Interscience, Canada 1991.
dc.identifier.citedreferenceX. C. Tong, Functional Metamaterials and Metadevices, Vol. 262, Springer, Bolingbrook, IL, USA 2017.
dc.identifier.citedreferenceJ. B. Pendry, Phys. Rev. Lett. 2000, 85, 3966.
dc.identifier.citedreferenceY. Tang, A. E. Cohen, Phys. Rev. Lett. 2010, 104, 163901.
dc.identifier.citedreferenceJ. Y. Kim, H. Kim, B. H. Kim, T. Chang, J. Lim, H. M. Jin, J. H. Mun, Y. J. Choi, K. Chung, J. Shin, Nat. Commun. 2016, 7, 12911.
dc.identifier.citedreferenceC. M. Soukoulis, M. Wegener, Nat. Photonics 2011, 5, 523.
dc.identifier.citedreferenceA. M. Urbas, Z. Jacob, L. Dal Negro, N. Engheta, A. Boardman, P. Egan, A. B. Khanikaev, V. Menon, M. Ferrera, N. Kinsey, C. DeVault, J. Kim, V. Shalaev, A. Boltasseva, J. Valentine, C. Pfeiffer, A. Grbic, E. Narimanov, L. Zhu, S. Fan, A. Alu, E. Poutrina, N. M. Litchinitser, M. A. Noginov, K. F. MacDonald, E. Plum, X. Liu, P. F. Nealey, C. R. Kagam, C. B. Murray, D. A. Pawlak, I. I. Smolyaninov, V. N. Smolyaninov, D. Chanda, J. Optics 2016, 18, 093005.
dc.identifier.citedreferenceT. Yatsui, Nanophotonic Fabrication: Selfâ Assembly and Deposition Techniques, Springer Verlag, Berlin 2012.
dc.identifier.citedreferenceB. P. Isaacoff, K. A. Brown, Nano Lett. 2017, 17, 6508.
dc.identifier.citedreferenceJ. F. Galisteoâ López, M. Ibisate, R. Sapienza, L. S. Froufeâ Pérez, à . Blanco, C. López, Adv. Mater. 2011, 23, 30.
dc.identifier.citedreferenceG. von Freymann, V. Kitaev, B. V. Lotsch, G. A. Ozin, Chem. Soc. Rev. 2013, 42, 2528.
dc.identifier.citedreferenceG. A. Chadwick, Prog. Mater. Sci. 1963, 12, 99.
dc.identifier.citedreferenceA. Noshay, J. E. McGrath, Block Copolymers: Overview and Critical Survey, Elsevier Science, Burlington 2013.
dc.identifier.citedreferenceC. De Rosa, C. Park, E. L. Thomas, B. Lotz, Nature 2000, 405, 433.
dc.identifier.citedreferenceR. Elliott, Int. Met. Rev. 1977, 22, 161.
dc.identifier.citedreferenceM. Muthukumar, C. Ober, E. Thomas, Science 1997, 277, 1225.
dc.identifier.citedreferenceH. Zeng, J. Li, J. P. Liu, Z. L. Wang, S. Sun, Nature 2002, 420, 395.
dc.identifier.citedreferenceA. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurnâ Albrecht, T. P. Russell, V. M. Rotello, Nature 2000, 404, 746.
dc.identifier.citedreferenceK.â S. Choi, H. C. Lichtenegger, G. D. Stucky, E. W. McFarland, J. Am. Chem. Soc. 2002, 124, 12402.
dc.identifier.citedreferenceA. Corma, F. Rey, J. Rius, M. J. Sabater, S. Valencia, Nature 2004, 431, 287.
dc.identifier.citedreferenceE. Winfree, F. Liu, L. A. Wenzler, N. C. Seeman, Nature 1998, 394, 539.
dc.identifier.citedreferenceS. M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf, W. M. Shih, Nature 2009, 459, 414.
dc.identifier.citedreferenceB. J. Scott, G. Wirnsberger, G. D. Stucky, Chem. Mater. 2001, 13, 3140.
dc.identifier.citedreferenceW. D. Callister, D. G. Rethwisch, Materials Science and Engineering, Vol. 5, John Wiley & Sons, New York 2011.
dc.identifier.citedreferenceF. Xia, L. Jiang, Adv. Mater. 2008, 20, 2842.
dc.identifier.citedreferenceA. Malshe, K. Rajurkar, A. Samant, H. N. Hansen, S. Bapat, W. Jiang, CIRP Ann. Manuf. Technol. 2013, 62, 607.
dc.identifier.citedreferenceJ. Huang, L. Lin, D. Sun, H. Chen, D. Yang, Q. Li, Chem. Soc. Rev. 2015, 44, 6330.
dc.identifier.citedreferenceS. Kim, C. B. Park, Adv. Funct. Mater. 2013, 23, 10.
dc.identifier.citedreferenceP. M. Ajayan, L. S. Schadler, P. V. Braun, Nanocomposite Science and Technology, Wileyâ VCH, Weinheim, Germany 2003.
dc.identifier.citedreferenceK. Liu, L. Jiang, Nano Today 2011, 6, 155.
dc.identifier.citedreferenceP. V. Braun, P. Wiltzius, Nature 1999, 402, 603.
dc.identifier.citedreferenceJ. Kim, H. S. Kim, J. H. Choi, H. Jeon, Y. Yoon, J. Liu, J.â G. Park, P. V. Braun, Chem. Mater. 2014, 26, 7051.
dc.identifier.citedreferenceM. Miyake, M. Suginohara, N. Narahara, T. Hirato, P. V. Braun, Chem. Mater. 2017, 29, 9734.
dc.identifier.citedreferenceJ. I. Lee, S. H. Cho, S.â M. Park, J. K. Kim, J. K. Kim, J.â W. Yu, Y. C. Kim, T. P. Russell, Nano Lett. 2008, 8, 2315.
dc.identifier.citedreferenceJ. W. Galusha, M. R. Jorgensen, M. H. Bartl, Adv. Mater. 2010, 22, 107.
dc.identifier.citedreferenceW. Zhang, D. Zhang, T. Fan, J. Ding, Q. Guo, H. Ogawa, Nanotechnology 2006, 17, 840.
dc.identifier.citedreferenceD. Kurdyukov, N. F. Kartenko, V. Golubev, J. Alloys Compd. 2010, 492, 611.
dc.identifier.citedreferenceK. A. Arpin, A. Mihi, H. T. Johnson, A. J. Baca, J. A. Rogers, J. A. Lewis, P. V. Braun, Adv. Mater. 2010, 22, 1084.
dc.identifier.citedreferenceS. G. Romanov, C. M. Sotomayor Torres, in Handbook of Nanostructured Materials and Nanotechnology (Ed: H. S. Nalwa ), Academic Press, Burlington 2000, p. xxi.
dc.identifier.citedreferenceE. Armstrong, C. O’Dwyer, J. Mater. Chem. C 2015, 3, 6109.
dc.identifier.citedreferenceH. Zhang, T. Shi, D. J. Wetzel, R. G. Nuzzo, P. V. Braun, Adv. Mater. 2016, 28, 742.
dc.identifier.citedreferenceJ. Liu, Q. Zheng, M. D. Goodman, H. Zhu, J. Kim, N. A. Krueger, H. Ning, X. Huang, J. Liu, M. Terrones, P. V. Braun, Adv. Mater. 2016, 28, 7696.
dc.identifier.citedreferenceS. Kim, J. Liu, K. Sun, J. Wang, S. J. Dillon, P. V. Braun, Adv. Funct. Mater. 2017, 27, 1702783.
dc.identifier.citedreferenceR. Zhang, J. Cohen, S. Fan, P. V. Braun, Nanoscale 2017, 9, 11187.
dc.identifier.citedreferenceD. Wang, V. Salgueirinoâ Maceira, L. M. Lizâ Marzan, F. Caruso, Adv. Mater. 2002, 14, 908.
dc.identifier.citedreferenceH. Masuda, M. Satoh, Jpn. J. Appl. Phys. 1996, 35, L126.
dc.identifier.citedreferenceY. Wu, G. Cheng, K. Katsov, S. W. Sides, J. Wang, J. Tang, G. H. Fredrickson, M. Moskovits, G. D. Stucky, Nat. Mater. 2004, 3, 816.
dc.identifier.citedreferenceD. Yang, J. Carpenaâ Nunez, L. F. Fonseca, A. Biaggiâ Labiosa, G. W. Hunter, Sci. Rep. 2014, 4, 3773.
dc.identifier.citedreferenceP. Vukusic, J. R. Sambles, Nature 2003, 424, 852.
dc.identifier.citedreferenceA. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, Nature 2000, 405, 437.
dc.identifier.citedreferenceY. A. Vlasov, X.â Z. Bo, J. C. Sturm, D. J. Norris, Nature 2001, 414, 289.
dc.identifier.citedreferenceB. A. Parviz, D. Ryan, G. M. Whitesides, IEEE Trans. Adv. Packag. 2003, 26, 233.
dc.identifier.citedreferenceG. M. Gratson, F. Garcíaâ Santamaría, V. Lousse, M. Xu, S. Fan, J. A. Lewis, P. V. Braun, Adv. Mater. 2006, 18, 461.
dc.identifier.citedreferenceW. Lee, A. Chan, M. A. Bevan, J. A. Lewis, P. V. Braun, Langmuir 2004, 20, 5262.
dc.identifier.citedreferenceP. Chen, Z. Luo, S. Guven, S. Tasoglu, A. V. Ganesan, A. Weng, U. Demirci, Adv. Mater. 2014, 26, 5936.
dc.identifier.citedreferenceN. V. Dziomkina, G. J. Vancso, Soft Matter 2005, 1, 265.
dc.identifier.citedreferenceA. M. Hung, C. M. Micheel, L. D. Bozano, L. W. Osterbur, G. M. Wallraff, J. N. Cha, Nat. Nanotechnol. 2010, 5, 121.
dc.identifier.citedreferenceD. Wang, H. Möhwald, J. Mater. Chem. 2004, 14, 459.
dc.identifier.citedreferenceJ. Y. Cheng, A. M. Mayes, C. A. Ross, Nat. Mater. 2004, 3, 823.
dc.identifier.citedreferenceM. Ramanathan, S Michael Kilbey II, Q. Ji, J. P. Hill, K. Ariga, J. Mater. Chem. 2012, 22, 10389.
dc.identifier.citedreferenceS. O. Kim, H. H. Solak, M. P. Stoykovich, N. J. Ferrier, J. J. de Pablo, P. F. Nealey, Nature 2003, 424, 411.
dc.identifier.citedreferenceC. Park, J. Y. Cheng, M. J. Fasolka, A. M. Mayes, C. A. Ross, E. L. Thomas, C. De Rosa, Appl. Phys. Lett. 2001, 79, 848.
dc.identifier.citedreferenceM. S. Onses, C. Song, L. Williamson, E. Sutanto, P. M. Ferreira, A. G. Alleyne, P. F. Nealey, H. Ahn, J. A. Rogers, Nat. Nanotechnol. 2013, 8, 667.
dc.identifier.citedreferenceH. Yi, X. Y. Bao, R. Tiberio, H. S. P. Wong, Nano Lett. 2015, 15, 805.
dc.identifier.citedreferenceJ. Y. Cheng, C. A. Ross, E. L. Thomas, H. I. Smith, G. J. Vancso, Adv. Mater. 2003, 15, 1599.
dc.identifier.citedreferenceJ. Fan, S. W. Boettcher, C.â K. Tsung, Q. Shi, M. Schierhorn, G. D. Stucky, Chem. Mater. 2007, 20, 909.
dc.identifier.citedreferenceP. V. Braun, P. Osenar, S. I. Stupp, Nature 1996, 380, 325.
dc.identifier.citedreferenceS. J. Tan, M. J. Campolongo, D. Luo, W. Cheng, Nat. Nanotechnol. 2011, 6, 268.
dc.identifier.citedreferenceQ. Y. Lin, Z. Li, K. A. Brown, M. N. O’Brien, M. B. Ross, Y. Zhou, S. Butun, P. C. Chen, G. C. Schatz, V. P. Dravid, K. Aydin, C. A. Mirkin, Nano Lett. 2015, 15, 4699.
dc.identifier.citedreferenceT. Tigges, T. Heuser, R. Tiwari, A. Walther, Nano Lett. 2016, 16, 7870.
dc.identifier.citedreferenceE. M. Roller, L. K. Khorashad, M. Fedoruk, R. Schreiber, A. O. Govorov, T. Liedl, Nano Lett. 2015, 15, 1368.
dc.identifier.citedreferenceX. Li, J. C. Armasâ Pérez, J. P. Hernándezâ Ortiz, C. G. Arges, X. Liu, J. A. Martínezâ González, L. E. Ocola, C. Bishop, H. Xie, J. J. de Pablo, P. F. Nealey, ACS Nano 2017, 11, 6492.
dc.identifier.citedreferenceJ. W. Cahn, Acta Metall. 1961, 9, 795.
dc.identifier.citedreferenceJ. S. Langer, Ann. Phys. (N.Y.) 1971, 65, 53.
dc.identifier.citedreferenceK. Grönhagen, J. à gren, M. Odén, Scr. Mater. 2015, 95, 42.
dc.identifier.citedreferenceR. A. L. Jones, L. J. Norton, E. J. Kramer, F. S. Bates, P. Wiltzius, Phys. Rev. Lett. 1991, 66, 1326.
dc.identifier.citedreferenceK. Binder, P. Fratzl, in Phase Transformations in Materials, Wileyâ VCH, Weinheim, Germany 2001, p. 409.
dc.identifier.citedreferenceV. M. Lopezâ Hirata, E. O. Avilaâ Davila, M.â L. Saucedoâ Muñoz, J. D. Villegasâ Cardenas, O. Sorianoâ Vargas, Mater. Res. 2017, 20, 639.
dc.identifier.citedreferenceS. P. Singhal, H. Herman, G. Kostorz, J. Appl. Crystallogr. 1978, 11, 572.
dc.identifier.citedreferenceD. E. Laughlin, J. W. Cahn, Acta Metall. 1975, 23, 329.
dc.identifier.citedreferenceE. Levin, H. McMurdie, F. Hall, Phase Diagrams for Ceramists, The American Ceramic Society, Columbus, Ohio 1956.
dc.identifier.citedreferenceZ. Chen, X. Wang, Y. Qi, S. Yang, J. A. N. T. Soares, B. A. Apgar, R. Gao, R. Xu, Y. Lee, X. Zhang, J. Yao, L. W. Martin, ACS Nano 2016, 10, 10237.
dc.identifier.citedreferenceD. A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Roz·niatowski, R. Diduszko, M. Kaczkan, M. Malinowski, Chem. Mater. 2006, 18, 2450.
dc.identifier.citedreferenceD. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, I. Vendik, Adv. Funct. Mater. 2010, 20, 1116.
dc.identifier.citedreferenceJ. Hunt, K. Jackson, Trans. Metall. Soc. AIME 1966, 236, 843.
dc.identifier.citedreferenceK. Jackson, J. Hunt, Trans. Metall. Soc. AIME 1966, 236, 1129.
dc.identifier.citedreferenceE. Scheil, Z. Metallkunde 1946, 37, 123.
dc.identifier.citedreferenceE. Scheil, Z. Metallkunde 1954, 45, 298.
dc.identifier.citedreferenceJ. Llorca, V. Orera, Prog. Mater. Sci. 2006, 51, 711.
dc.identifier.citedreferenceA. Sayir, in Computerâ Aided Design of Highâ Temperature Materials (Eds: A. Pechenik, R. K. Kalia, P. Vashishta ), Oxford University Press, Oxford, UK 1999, p. 197.
dc.identifier.citedreferenceJ. Kim, L. K. Aagesen, J. H. Choi, J. Choi, H. S. Kim, J. Liu, C. R. Cho, J. G. Kang, A. Ramazani, K. Thornton, P. V. Braun, Adv. Mater. 2015, 27, 4551.
dc.identifier.citedreferenceJ. W. Boley, K. Chaudhary, T. J. Ober, M. Khorasaninejad, W. T. Chen, E. Hanson, A. Kulkarni, J. Oh, J. Kim, L. K. Aagesen, A. Y. Zhu, F. Capasso, K. Thornton, P. V. Braun, J. A. Lewis, Adv. Mater. 2017, 29, 1604778.
dc.identifier.citedreferenceJ. Pena, R. Merino, N. Harlan, A. Larrea, G. De La Fuente, V. Orera, J. Eur. Ceram. Soc. 2002, 22, 2595.
dc.identifier.citedreferenceJ. Lee, A. Yoshikawa, H. Kaiden, K. Lebbou, T. Fukuda, D. Yoon, Y. Waku, J. Cryst. Growth 2001, 231, 179.
dc.identifier.citedreferenceN. Yasui, T. Kobayashi, Y. Ohashi, T. Den, J. Cryst. Growth 2014, 399, 7.
dc.identifier.citedreferenceA. Larrea, L. Contreras, R. I. Merino, J. Llorca, V. M. Orera, J. Mater. Res. 2011, 15, 1314.
dc.identifier.citedreferenceP. B. Oliete, J. I. Peña, A. Larrea, V. M. Orera, J. LLorca, J. Y. Pastor, A. Martín, J. Segurado, Adv. Mater. 2007, 19, 2313.
dc.identifier.citedreferenceH. Okamoto, Phase Diagrams for Binary Alloys, Vol. 314, ASM International, Materials Park, Ohio 2000.
dc.identifier.citedreferenceP. Villars, A. Prince, H. Okamoto, Handbook of Ternary Alloy Phase Diagrams, ASM International, Materials Park, Ohio 1995.
dc.identifier.citedreferenceU. R. Kattner, T. B. Massalski, Binary Alloy Phase Diagrams, Vol. 147, ASM International, Materials Park, Ohio 1990.
dc.identifier.citedreferenceF. S. Galasso, JOM 1967, 19, 17.
dc.identifier.citedreferenceF. S. Galasso, F. C. Douglas, J. A. Batt, JOM 1970, 22, 40.
dc.identifier.citedreferenceJ. J. Favier, J. P. Morlevat, J. Duvernoy, Metall. Trans. B 1983, 14B, 105.
dc.identifier.citedreferenceN. M. Davis, A. R. Clawson, H. H. Wieder, Appl. Phys. Lett. 1969, 15, 213.
dc.identifier.citedreferenceM. P. M. Colleoni, B. Vidal, IEEE Trans. Terahertz Sci. Technol. 2016, 6, 757.
dc.identifier.citedreferenceJ. Choi, A. A. Kulkarni, E. Hanson, D. Baconâ Brown, K. Thornton, P. V. Braun, Adv. Opt. Mater. 2018, https://doi.org/10.1002/adom.201701316 (in press).
dc.identifier.citedreferenceV. M. Orera, J. I. Peña, R. I. Merino, J. A. Lázaro, J. A. Vallés, M. A. Rebolledo, Appl. Phys. Lett. 1997, 71, 2746.
dc.identifier.citedreferenceV. M. Orera, Ã . Larrea, Opt. Mater. 2005, 27, 1726.
dc.identifier.citedreferenceJ. D. Parsons, A. S. Yue, J. Cryst. Growth 1981, 55, 470.
dc.identifier.citedreferenceN. Yasui, Y. Ohashi, T. Kobayashi, T. Den, Adv. Mater. 2012, 24, 5464.
dc.identifier.citedreferenceM. F. Acosta, S. G. Rodrigo, L. Martínâ Moreno, C. Pecharromán, R. I. Merino, Adv. Opt. Mater. 2017, 5, 1600670.
dc.identifier.citedreferenceM. Massaouti, A. Basharin, M. Kafesaki, M. Acosta, R. Merino, V. Orera, E. Economou, C. Soukoulis, S. Tzortzakis, Opt. Lett. 2013, 38, 1140.
dc.identifier.citedreferenceJ. A. Pardo, J. I. Pena, R. I. Merino, R. Cases, Ã . Larrea, V. M. Orera, J. Nonâ Cryst. Solids 2002, 298, 23.
dc.identifier.citedreferenceC. Müller, T. A. M. Ferenczi, M. Campoyâ Quiles, J. M. Frost, D. D. C. Bradley, P. Smith, N. Stingelinâ Stutzmann, J. Nelson, Adv. Mater. 2008, 20, 3510.
dc.identifier.citedreferenceF. Simon, S. Clevers, G. Gbabode, N. Couvrat, V. Agasseâ Peulon, M. Sanselme, V. Dupray, G. Coquerel, Cryst. Growth Des. 2015, 15, 946.
dc.identifier.citedreferenceK. Sadecka, M. Gajc, K. Orlinski, H. B. Surma, A. Klos, I. Jozwikâ Biala, K. Sobczak, P. Dluzewski, J. Toudert, D. A. Pawlak, Adv. Opt. Mater. 2015, 3, 381.
dc.identifier.citedreferenceS. Akamatsu, S. Bottinâ Rousseau, M. Sâ erefoÄ lu, G. Faivre, Acta Mater. 2012, 60, 3206.
dc.identifier.citedreferenceP. Villars, H. Okamoto, K. Cenzual, ASM Alloy Phase Diagrams Database, ASM International, Materials Park, Ohio 2016.
dc.identifier.citedreferenceE. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C. M. Soukoulis, Nature 2003, 423, 604.
dc.identifier.citedreferenceI. Yamada, K. Takano, M. Hangyo, M. Saito, W. Watanabe, Opt. Lett. 2009, 34, 274.
dc.identifier.citedreferenceM. G. Day, A. Hellawell, Proc. R. Soc. London, Ser. A 1968, 305, 473.
dc.identifier.citedreferenceA. Hellawell, Trans. Metall. Soc. AIME 1967, 239, 1049.
dc.identifier.citedreferenceA. J. Shahani, X. Xiao, P. W. Voorhees, Nat. Commun. 2016, 7, 12953.
dc.identifier.citedreferenceZ. Ebrahimi, Arch. Metall. Mater. 2017, 62, 1969.
dc.identifier.citedreferenceA. Cerjan, S. Fan, New J. Phys. 2016, 18, 125007.
dc.identifier.citedreferenceA. Cerjan, S. Fan, Phys. Rev. Lett. 2017, 118, 253902.
dc.identifier.citedreferenceA. Cerjan, S. Fan, Phys. Rev. A 2016, 94, 033857.
dc.identifier.citedreferenceA. Cerjan, A. Raman, S. Fan, Phys. Rev. Lett. 2016, 116, 203902.
dc.identifier.citedreferenceC. D. Adams, D. J. Srolovitz, M. Atzmon, J. Appl. Phys. 1993, 74, 1707.
dc.identifier.citedreferenceI. Petrov, P. B. Barna, L. Hultman, J. E. Greene, J. Vac. Sci. Technol. A 2003, 21, S117.
dc.identifier.citedreferenceK. Fukutani, K. Tanji, T. Saito, T. Den, J. Appl. Phys. 2005, 98, 033507.
dc.identifier.citedreferenceW. Lu, D. Kim, Acta Mater. 2005, 53, 3689.
dc.identifier.citedreferenceH.â C. Yu, W. Lu, Acta Mater. 2005, 53, 1799.
dc.identifier.citedreferenceT. Takaki, T. Hasebe, Y. Tomita, J. Cryst. Growth 2006, 287, 495.
dc.identifier.citedreferenceL. Tan, N. Zabaras, J. Comput. Phys. 2007, 221, 9.
dc.identifier.citedreferenceX.â F. Wu, Y. A. Dzenis, Phys. Rev. E 2008, 77, 031807.
dc.identifier.citedreferenceL. Gránásy, G. Tegze, G. I. Tóth, T. Pusztai, Philos. Mag. 2011, 91, 123.
dc.identifier.citedreferenceB. Sadtler, S. P. Burgos, N. A. Batara, J. A. Beardslee, H. A. Atwater, N. S. Lewis, Proc. Natl. Acad. Sci. USA 2013, 110, 19707.
dc.identifier.citedreferenceA. Bhattacharya, A. Kiran, S. Karagadde, P. Dutta, J. Comput. Phys. 2014, 262, 217.
dc.identifier.citedreferenceA. Fang, K. H. Anna, A. Grosskopf, J. E. Anthony, Y.â L. Loo, M. Haataja, APL Mater. 2015, 3, 036107.
dc.identifier.citedreferenceN. G. Almarza, J. Pekalski, A. Ciach, Soft Matter 2016, 12, 7551.
dc.identifier.citedreferenceL.â X. Lu, Y.â M. Wang, B. M. Srinivasan, M. Asbahi, J. K. W. Yang, Y.â W. Zhang, Sci. Rep. 2016, 6, 32398.
dc.identifier.citedreferenceA. Fang, M. Haataja, J. Electrochem. Soc. 2017, 164, D875.
dc.identifier.citedreferenceJ. D. Hill, P. C. Millett, Sci. Rep. 2017, 7, 5250.
dc.identifier.citedreferenceH.â Y. Hsu, B.â T. Lin, Y.â R. Hsu, Adv. Mech. Eng. 2017, 9, https://doi.org/10.1177/1687814016683357.
dc.identifier.citedreferenceR. Kurita, Sci. Rep. 2017, 7, 6912.
dc.identifier.citedreferenceK. Thornton, J. Ã gren, P. W. Voorhees, Acta Mater. 2003, 51, 5675.
dc.identifier.citedreferenceG. Boussinot, C. Hüter, E. A. Brener, Phys. Rev. E 2011, 83, 020601.
dc.identifier.citedreferenceJ. D. van der Waals, J. Stat. Phys. 1979, 20, 200.
dc.identifier.citedreferenceS. G. Kim, W. T. Kim, T. Suzuki, Phys. Rev. E 1999, 60, 7186.
dc.identifier.citedreferenceA. Karma, W. J. Rappel, Phys. Rev. E 1996, 53, R3017.
dc.identifier.citedreferenceJ. W. Cahn, J. E. Hilliard, J. Chem. Phys. 1959, 31, 688.
dc.identifier.citedreferenceN. Provatas, K. Elder, in Phaseâ Field Methods in Materials Science and Engineering, Wileyâ VCH, Weinheim, Germany 2010, p. 33.
dc.identifier.citedreferenceS. M. Allen, J. W. Cahn, Acta Metall. 1979, 27, 1085.
dc.identifier.citedreferenceR. Kobayashi, Physica D 1993, 63, 410.
dc.identifier.citedreferenceG. Caginalp, Arch. Ration. Mech. Anal. 1986, 92, 205.
dc.identifier.citedreferenceA. A. Wheeler, W. J. Boettinger, G. B. McFadden, Phys. Rev. A 1992, 45, 7424.
dc.identifier.citedreferenceJ. E. Guyer, W. J. Boettinger, J. A. Warren, G. B. McFadden, Phys. Rev. E 2004, 69, 021603.
dc.identifier.citedreferenceJ. E. Guyer, W. J. Boettinger, J. A. Warren, G. B. McFadden, Phys. Rev. E 2004, 69, 021604.
dc.identifier.citedreferenceB. Nestler, A. A. Wheeler, Physica D 2000, 138, 114.
dc.identifier.citedreferenceM. Apel, B. Boettger, H. J. Diepers, I. Steinbach, J. Cryst. Growth 2002, 237, 154.
dc.identifier.citedreferenceR. Folch, M. Plapp, Phys. Rev. E 2003, 68, 010602.
dc.identifier.citedreferenceR. Folch, M. Plapp, Phys. Rev. E 2005, 72, 011602.
dc.identifier.citedreferenceA. Karma, Phys. Rev. Lett. 2001, 87, 115701.
dc.identifier.citedreferenceG. Boussinot, E. A. Brener, Phys. Rev. E 2014, 89, 060402.
dc.identifier.citedreferenceM. Ohno, T. Takaki, Y. Shibuta, Phys. Rev. E 2017, 96, 033311.
dc.identifier.citedreferenceA. Karma, Phys. Rev. E 1994, 49, 2245.
dc.identifier.citedreferenceK. R. Elder, F. Drolet, J. M. Kosterlitz, M. Grant, Phys. Rev. Lett. 1994, 72, 677.
dc.identifier.citedreferenceK. R. Elder, J. D. Gunton, M. Grant, Phys. Rev. E 1996, 54, 6476.
dc.identifier.citedreferenceA. A. Wheeler, G. B. McFadden, W. J. Boettinger, Proc. R. Soc. London, Ser. A 1996, 452, 495.
dc.identifier.citedreferenceM. Plapp, A. Karma, Phys. Rev. E 2002, 66, 061608.
dc.identifier.citedreferenceS. Akamatsu, G. Faivre, M. Plapp, A. Karma, Metall. Mater. Trans. A 2004, 35, 1815.
dc.identifier.citedreferenceJ. R. Green, P. K. Jimack, A. M. Mullis, Metall. Mater. Trans. A 2007, 38, 1426.
dc.identifier.citedreferenceA. Parisi, M. Plapp, Acta Mater. 2008, 56, 1348.
dc.identifier.citedreferenceA. Parisi, M. Plapp, Europhys. Lett. 2010, 90, 26010.
dc.identifier.citedreferenceM. Plapp, A. Karma, Phys. Rev. E 1999, 60, 6865.
dc.identifier.citedreferenceM. Å erefoÄ lu, R. E. Napolitano, M. Plapp, Phys. Rev. E 2011, 84, 011614.
dc.identifier.citedreferenceM. Å erefoÄ lu, S. Bottinâ Rousseau, S. Akamatsu, G. Faivre, IOP Conf. Ser.: Mater. Sci. Eng. 2012, 27, 012030.
dc.identifier.citedreferenceS. Ghosh, M. Plapp, Acta Mater. 2017, 140, 140.
dc.identifier.citedreferenceA. Lahiri, C. Tiwary, K. Chattopadhyay, A. Choudhury, Comput. Mater. Sci. 2017, 130, 109.
dc.identifier.citedreferenceA. Zhang, Z. Guo, S. M. Xiong, J. Appl. Phys. 2017, 121, 125101.
dc.identifier.citedreferenceO. Kazemi, G. Hasemann, M. Krüger, T. Halle, IOP Conf. Ser.: Mater. Sci. Eng. 2016, 118, 012028.
dc.identifier.citedreferenceA. Choudhury, M. Plapp, B. Nestler, Phys. Rev. E 2011, 83, 051608.
dc.identifier.citedreferenceJ. Hötzer, M. Jainta, P. Steinmetz, B. Nestler, A. Dennstedt, A. Genau, M. Bauer, H. Köstler, U. Rüde, Acta Mater. 2015, 93, 194.
dc.identifier.citedreferenceJ. Hötzer, P. Steinmetz, M. Jainta, S. Schulz, M. Kellner, B. Nestler, A. Genau, A. Dennstedt, M. Bauer, H. Köstler, U. Rüde, Acta Mater. 2016, 106, 249.
dc.identifier.citedreferenceH.â S. Lee, Y.â S. Lee, J.â Y. Suh, M. Kim, J.â S. Yu, Y. W. Cho, J. Phys. Chem. C 2011, 115, 20027.
dc.identifier.citedreferenceX. Liu, D. Peaslee, T. P. Sheehan, E. H. Majzoub, J. Phys. Chem. C 2014, 118, 27265.
dc.identifier.citedreferenceE. Roedern, B. R. S. Hansen, M. B. Ley, T. R. Jensen, J. Phys. Chem. C 2015, 119, 25818.
dc.identifier.citedreferenceK. C. Hugo, J. Phys.: Condens. Matter 2001, 13, R95.
dc.identifier.citedreferenceM. Sliwinskaâ Bartkowiak, M. Jazdzewska, M. Trafas, M. Kaczmarekâ Klinowska, K. E. Gubbins, J. Chem. Eng. Data 2015, 60, 3093.
dc.identifier.citedreferenceJ. Hunt, J. Chilton, J. Inst. Met. 1963, 91, 338.
dc.identifier.citedreferenceZ. Yan, M. Han, Y. Shi, A. Badea, Y. Yang, A. Kulkarni, E. Hanson, M. E. Kandel, X. Wen, F. Zhang, Y. Luo, Q. Lin, H. Zhang, X. Guo, Y. Huang, K. Nan, S. Jia, A. W. Oraham, M. B. Mevis, J. Lim, X. Guo, M. Gao, W. Ryu, J. K. Yu, B. G. Nicolau, A. Petronico, S. S. Rubakhin, J. Lou, P. M. Ajayan, K. Thornton, G. Popescu, D. Fang, J. V. Sweedler, P. V. Braun, H. Zhang, R. G. Nuzzo, Y. Huang, Y. Zhang, J. A. Rogers, Proc. Natl. Acad. Sci. USA 2017, 114, E9455.
dc.identifier.citedreferenceS. Xu, Z. Yan, K.â I. Jang, W. Huang, H. Fu, J. Kim, Z. Wei, M. Flavin, J. McCracken, R. Wang, A. Badea, Y. Liu, D. Xiao, G. Zhou, J. Lee, H. U. Chung, H. Cheng, W. Ren, A. Banks, X. Li, U. Paik, R. G. Nuzzo, Y. Huang, Y. Zhang, J. A. Rogers, Science 2015, 347, 154.
dc.identifier.citedreferenceM. Plapp, S. Bottinâ Rousseau, G. Faivre, S. Akamatsu, C. R. Méc. 2017, 345, 56.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.