Show simple item record

Modeling Study of the Geospace System Response to the Solar Wind Dynamic Pressure Enhancement on 17 March 2015

dc.contributor.authorOzturk, D. S.
dc.contributor.authorZou, S.
dc.contributor.authorRidley, A. J.
dc.contributor.authorSlavin, J. A.
dc.date.accessioned2018-06-11T18:00:26Z
dc.date.available2019-05-13T14:45:28Zen
dc.date.issued2018-04
dc.identifier.citationOzturk, D. S.; Zou, S.; Ridley, A. J.; Slavin, J. A. (2018). "Modeling Study of the Geospace System Response to the Solar Wind Dynamic Pressure Enhancement on 17 March 2015." Journal of Geophysical Research: Space Physics 123(4): 2974-2989.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/144291
dc.description.abstractThe global magnetosphere‐ionosphere‐thermosphere system is intrinsically coupled and susceptible to external drivers such as solar wind dynamic pressure enhancements. In order to understand the large‐scale dynamic processes in the magnetosphere‐ionosphere‐thermosphere system due to the compression from the solar wind, the 17 March 2015 sudden commencement was studied in detail using global numerical models. This storm was one of the most geoeffective events of the solar cycle 24 with a minimum Dst of −222 nT. The Wind spacecraft recorded a 10‐nPa increment in the solar wind dynamic pressure, while the interplanetary magnetic field BZ became further northward. The University of Michigan Block‐Adaptive‐Tree Solar wind Roe‐type Upwind Scheme global magnetohydrodynamic code was utilized to study the generation and propagation of perturbations associated with the compression of the magnetosphere system. In addition, the high‐resolution electric potential and auroral power output from the magnetohydrodynamic model was used to drive the global ionosphere‐thermosphere model to investigate the ionosphere‐thermosphere system response to pressure enhancement. During the compression, the electric potentials and convection patterns in the polar ionosphere were significantly altered when the preliminary impulse and main impulse field‐aligned currents moved from dayside to nightside. As a result of enhanced frictional heating, plasma and neutral temperatures increased at the locations where the flow speeds were enhanced, whereas the electron density dropped at these locations. In particular, the region between the preliminary impulse and main impulse field‐aligned currents experienced the most significant heating with 1000‐K ion temperature increase and 20‐K neutral temperature increase within 2 min. Comparison of the simulation results with the Poker Flat Incoherent Scatter Radar observations showed reasonable agreements despite underestimated magnitudes.Plain Language SummaryDuring 17 March 2015, near‐Earth environment was significantly perturbed due to an interplanetary shock. Using numerical models, we studied the effect of this shock on the geospace system. We have found that the compression due to the shock can affect the Earth’s upper atmosphere immediately. The shock created various perturbations including but not limited to temperature and density variations, at low‐Earth orbit altitudes, which are very important for spacecraft operations. Ground‐based measurements supported our findings and revealed that the perturbations occurring were even more drastic than we modeled.Key PointsShock‐induced compression significantly alters the high‐latitude convection patternsLarge convection speed between PI and MI FACs caused significant frictional heating and subsequent heat transfer between ions and neutralsThe simulation results in general reproduce observations despite lower magnitudes
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othersolar wind dynamic pressure enhancement
dc.subject.othernumerical modeling
dc.subject.otherstorm sudden commencement
dc.subject.othermagnetosphere‐ionosphere‐thermosphere coupling
dc.subject.othermain impulse
dc.subject.otherpreliminary impulse
dc.titleModeling Study of the Geospace System Response to the Solar Wind Dynamic Pressure Enhancement on 17 March 2015
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144291/1/jgra54179_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144291/2/jgra54179.pdf
dc.identifier.doi10.1002/2017JA025099
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceTanaka, T. ( 2003 ). Formation of magnetospheric plasma population regimes coupled with the dynamo process in the convection system. Journal of Geophysical Research, 108 ( A8 ), 1315. https://doi.org/10.1029/2002JA009668
dc.identifier.citedreferenceTanaka, T. ( 2007 ). Magnetosphere‐ionosphere convection as a compound system. Space Science Reviews, 133 ( 1‐4 ), 1 – 72. https://doi.org/10.1007/s11214‐007‐9168‐4
dc.identifier.citedreferenceThayer, J. P. ( 1998 ). Height‐resolved Joule heating rates in the high‐latitude E region and the influence of neutral winds. Journal of Geophysical Research, 103, 471 – 487. https://doi.org/10.1029/97JA02536
dc.identifier.citedreferenceToth, G. ( 2000 ). The ∇·B = 0 constraint in shock‐capturing magnetohydrodynamics codes. Journal of Computational Physics, 161 ( 2 ), 605 – 652. https://doi.org/10.1006/jcph.2000.6519
dc.identifier.citedreferenceToth, G., Sokolov, I. V., Gombosi, T. I., Chesney, D. R., Clauer, C. R., De Zeeuw, D. L., et al. ( 2005 ). Space Weather Modeling Framework: A new tool for the space science community. Journal of Geophysical Research, 110, A12226. https://doi.org/10.1029/2005JA011126
dc.identifier.citedreferenceTóth, G., van der Holst, B., Sokolov, I., De Zeeuw, D., Gombosi, T., Fang, F., et al. ( 2012 ). Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 231 ( 3 ), 870 – 903. https://doi.org/10.1016/j.jcp.2011.02.006
dc.identifier.citedreferenceUntiedt, J., & Baumjohann, W. ( 1993 ). Studies of polar current systems using the IMS Scandinavian magnetometer array. Space Science Reviews, 63 ( 3–4 ), 245 – 390. https://doi.org/10.1007/BF00750770
dc.identifier.citedreferenceValladares, C. E., Alcaydé, D., Rodriguez, J. V., Ruohoniemi, J. M., & van Eyken, A. P. ( 1999 ). Observations of plasma density structures in association with the passage of traveling convection vortices and the occurrence of large plasma jets. Annales Geophysicae, 17 ( 8 ), 1020 – 1039. https://doi.org/10.1007/s00585‐999‐1020‐6
dc.identifier.citedreferenceVerkhoglyadova, O., Meng, X., Manucci, A. J., Mlynzcak, M. G., Hunt, L. A., & Lu, G. ( 2017 ). Ionosphere‐thermosphere energy budgets for the ICME storms of March 2013 and 2015 estimated with GITM and observational proxies. Space Weather, 15, 1102 – 1124. https://doi.org/10.1002/2017SW001650
dc.identifier.citedreferenceVerkhoglyadova, O. P., Tsurutani, B. T., Mannucci, A. J., Mlynczak, M. G., Hunt, L. A., Paxton, L. J., & Komjathy, A. ( 2016 ). Solar wind driving of ionosphere‐thermosphere responses in three storms near St. Patrick’s Day in 2012, 2013, and 2015. Journal of Geophysical Research: Space Physics, 121, 8900 – 8923. https://doi.org/10.1002/2016JA022883
dc.identifier.citedreferenceWang, W., Burns, A. G., & Killeen, T. I. ( 2006 ). A numerical study of the response of the ionospheric electron temperature to geomagnetic activity. Geophysical Research Letters, 111, A11301. https://doi.org/10.1029/2006JA011698
dc.identifier.citedreferenceWang, Y., Zhang, Q., Liu, J., Shen, C., Shen, F., Yang, Z., et al. ( 2016 ). On the propagation of a geoeffective coronal mass ejection during 15–17 March 2015. Journal of Geophysical Research: Space Physics, 121, 7423 – 7434. https://doi.org/10.1002/2016JA022924
dc.identifier.citedreferenceWeimer, D. R. ( 1996 ). Flexible, IMF dependent model of high‐latitude electric potentials having ‘space weather’ applications. Geophysical Research Letters, 23, 2549 – 2552. https://doi.org/10.1029/96GL02255
dc.identifier.citedreferenceWeimer, D. R. ( 2005 ). Improved ionospheric electrodynamic models and application to calculating Joule heating rates. Journal of Geophysical Research, 110, A05306. https://doi.org/10.1029/2004JA010884
dc.identifier.citedreferenceWeygand, J. M., Amm, O., Angelopoulos, V., Milan, S. E., Grocott, A., Gleisner, H., & Stolle, C. ( 2012 ). Comparison between SuperDARN flow vectors and equivalent ionospheric currents from ground magnetometer arrays. Journal of Geophysical Research, 117, A05325. https://doi.org/10.1029/2011JA017407
dc.identifier.citedreferenceWeygand, J. M., Amm, O., Viljanen, A., Angelopoulos, V., Murr, D., Engebretson, M. J., et al. ( 2011 ). Application and validation of the spherical elementary currents systems technique for deriving ionospheric equivalent currents with the North American and Greenland ground magnetometer arrays. Journal of Geophysical Research, 116, A03305. https://doi.org/10.1029/2010JA016177
dc.identifier.citedreferenceWilson, G. R., Weimer, D. R., Wise, J. O., & Marcos, F. A. ( 2006 ). Response of the thermosphere to Joule heating and particle precipitation. Journal of Geophysical Research, 111, A10314. https://doi.org/10.1029/2005JA011274
dc.identifier.citedreferenceYu, Y., & Ridley, A. J. ( 2009 ). The response of the magnetosphere‐ionosphere system to a sudden dynamic pressure enhancement under southward IMF conditions. Annales Geophysicae, 27 ( 12 ), 4391 – 4407. https://doi.org/10.5194/angeo‐27‐4391‐2009
dc.identifier.citedreferenceYu, Y., & Ridley, A. J. ( 2011 ). Understanding the response of the ionosphere‐magnetosphere system to sudden solar wind density increases. Journal of Geophysical Research, 116, A04210. https://doi.org/10.1029/2010JA015871
dc.identifier.citedreferenceZesta, E., Hughes, W. J., & Engebretson, M. ( 2002 ). A statistical study of traveling convection vortices using the Magnetometer Array for Cusp and Cleft Studies. Journal of Geophysical Research, 107 ( A10 ), 1317. https://doi.org/10.1029/1999JA000386
dc.identifier.citedreferenceZhang, B., Lotko, W., Brambles, O., Wiltberger, M., & Lyon, J. ( 2014 ). Electron precipitation models in global magnetosphere simulations. Journal of Geophysical Research, 120, 1035 – 1056. https://doi.org/10.1002/2014JA020615
dc.identifier.citedreferenceZhao, H. Y., Shen, X. C., Tang, B. B., Tian, A. M., Shi, Q. Q., Weygand, J. M., et al. ( 2015 ). Magnetospheric vortices and their global effect after a solar wind dynamic pressure decrease. Journal of Geophysical Research: Space Physics, 121, 1071 – 1077. https://doi.org/10.1002/2015JA021646
dc.identifier.citedreferenceZhu, J., & Ridley, A. J. ( 2016 ). Investigating the performance of simplified neutral‐ion collisional heating rate in a global IT model. Journal of Geophysical Research: Space Physics, 121, 578 – 588. https://doi.org/10.1002/2015JA021637
dc.identifier.citedreferenceZhu, J., Ridley, A. J., & Deng, Y. ( 2016 ). Simulating electron and ion temperature in a global ionosphere thermosphere model: Validation and modeling and idealized substorm. Journal of Atmosheric and Solar‐Terrestrial Physics, 138‐139, 243 – 260. https://doi.org/10.1016/j.jastp.2016.01.005
dc.identifier.citedreferenceZou, S., Ozturk, D., Varney, R., & Reimer, A. ( 2017 ). Effects of sudden commencement on the ionosphere: PFISR observations and global MHD simulation. Geophysical Research Letters, 44, 3047 – 3058. https://doi.org/10.1002/2017GL072
dc.identifier.citedreferenceAraki, T. ( 1977 ). Global structure of geomagnetic sudden commencements. Planetary and Space Science, 25 ( 4 ), 373 – 384. https://doi.org/10.1016/0032‐0633(77)90053‐8
dc.identifier.citedreferenceHönisch, M., & Glassmeier, K.‐H. ( 1986 ). Isolated transient magnetic variations in the auroral zone. Eos Transactions American Geophysical Union, 67, 1163.
dc.identifier.citedreferenceBoudouridis, A., Zesta, E., Lyons, R., Anderson, P. C., & Lummerzheim, D. ( 2003 ). Effect of solar wind pressure pulses on the size and strength of the auroral oval. Journal of Geophysical Research, 108 ( A4 ), 8012. https://doi.org/10.1029/2002JA009373
dc.identifier.citedreferenceCherniak, I., Zakharenkova, I., & Redmon, R. J. ( 2015 ). Dynamics of the high‐latitude ionospheric irregularities during the 17 March 2015 St. Patrick’s Day storm: Ground based GPS measurements. Space Weather, 13, 585 – 597. https://doi.org/10.1002/2015SW001237
dc.identifier.citedreferenceChi, P. J., Russell, C. T., Raeder, J., Zesta, E., Yumoto, K., Kawano, H., et al. ( 2001 ). Propagation of the preliminary reverse impulse of sudden commencements to low latitudes. Journal of Geophysical Research, 106, 18,857 – 18,864. https://doi.org/10.1029/2001JA900071
dc.identifier.citedreferenceClauer, C. R., Banks, P. M., Smith, A. Q., Jorgensen, T. S., Friis‐Christensen, E., Vennerstrom, S., et al. ( 1984 ). Observation of interplanetary magnetic field and of ionospheric plasma convection in the vicinity of the dayside polar cleft. Geophysical Research Letters, 11, 891 – 894. https://doi.org/10.1029/GL011i009p00891
dc.identifier.citedreferenceCodrescu, M. V., Fuller‐Rowell, T. J., & Foster, J. C. ( 1995 ). The importance of E‐field variability for Joule heating in the high‐latitude thermosphere. Geophysical Research Letters, 22 ( 17 ), 2393 – 2396. https://doi.org/10.1029/95GL01909
dc.identifier.citedreferenceCosgrove, R. B., Lu, G., Bahcivan, H., Matsuo, T., Heinselman, C. J., & McCready, M. A. ( 2009 ). Comparison of AMIE‐modeled and Sondrestrom‐measured Joule heating: A study in model resolution and electric field–conductivity correlation. Journal of Geophysical Research, 114, A04316. https://doi.org/10.1029/2008JA013508
dc.identifier.citedreferenceDavid, M., Schunk, R. W., & Sojka, J. J. ( 2011 ). The effect of downward electron heat flow and electron cooling processes in the high‐latitude ionosphere. Journal of Atmospheric and Solar ‐ Terrestrial Physics, 73, 1029 – 1048.
dc.identifier.citedreferenceDeng, Y., & Ridley, A. J. ( 2006 ). Dependence of neutral winds on convection E‐field, solar EUV, and auroral particle precipitation at high latitudes. Journal of Geophysical Research, 111, A09306. https://doi.org/10.1029/2005JA011368
dc.identifier.citedreferenceDeng, Y., & Ridley, A. J. ( 2007 ). Possible reasons for underestimating Joule heating in global models: E field variability, spatial resolution, and vertical velocity. Journal of Geophysical Research, 112, A09308. https://doi.org/10.1029/2006JA012006
dc.identifier.citedreferenceEngebretson, M. J., Yeoman, T. K., Oksavik, K., Soraas, F., Sigernes, F., Moen, J. I., et al. ( 2013 ). Multi‐instrument observations from Svalbard of a traveling convection vortex, electromagnetic ion cyclotron wave burst, and proton precipitation associated with a bow shock instability. Journal of Geophysical Research: Space Physics, 118, 2975 – 2997. https://doi.org/10.1002/jgra.50291
dc.identifier.citedreferenceFagundes, P. R., Cardoso, F. A., Fejer, B. G., Venkatesh, K., Ribeiro, B. A. G., & Pillat, V. G. ( 2016 ). Positive and negative GPS‐TEC ionospheric storm effects during the extreme space weather event of March 2015 over the Brazilian sector. Journal of Geophysical Research: Space Physics, 121, 5613 – 5625. https://doi.org/10.1002/2015JA022214
dc.identifier.citedreferenceFok, M. C., Wolf, R. A., Spiro, R. W., & Moore, T. E. ( 2001 ). Comprehensive computational model of Earth’s ring current. Journal of Geophysical Research, 106, 8417 – 8424. https://doi.org/10.1029/2000JA000235
dc.identifier.citedreferenceFoster, J. C., Holt, J. M., Musgrove, R. G., & Evans, D. S. ( 1986 ). Ionospheric convection associated with discrete levels of particle precipitation. Geophysical Research Letters, 13, 656 – 659. https://doi.org/10.1029/GL013i007p00656
dc.identifier.citedreferenceFriis‐Christensen, E., McHenry, M. A., Clauer, C. R., & Vennerstrom, S. ( 1988 ). Ionospheric traveling convection vortices observed near the polar cleft: A triggered response to sudden changes in the solar wind. Geophysical Research Letters, 15, 253 – 256. https://doi.org/10.1029/GL015i003p00253
dc.identifier.citedreferenceFujita, S., Tanaka, T., Kikuchi, T., Fujimoto, K., Hosokawa, K., & Itonaga, M. ( 2003 ). A numerical simulation of the geomagnetic sudden commencement: 1. Generation of the field‐aligned current associated with the preliminary impulse. Journal of Geophysical Research, 108 ( A12 ), 1416. https://doi.org/10.1029/2002JA009407
dc.identifier.citedreferenceFujita, S., Tanaka, T., Kikuchi, T., Fujimoto, K., & Itonaga, M. ( 2003 ). A numerical simulation of the geomagnetic sudden commencement: 2. Plasma processes in the main impulse. Journal of Geophysical Research, 108 ( A12 ), 1417. https://doi.org/10.1029/2002JA009763
dc.identifier.citedreferenceFukushima, N. ( 1969 ). Equivalence in ground geomagnetic effect of Chapman‐Vestine’s and Birkeland‐Alfven’s current systems for polar magnetic storms. Rep. Ionosphere Space Research Japan, 23, 219 – 227.
dc.identifier.citedreferenceGlassmeier, K.‐H., & Heppner, C. ( 1992 ). Traveling magnetospheric convection twin vortices: Another case study, global characteristics, and a model. Journal of Geophysical Research, 97, 3977 – 3992. https://doi.org/10.1029/91JA02464
dc.identifier.citedreferenceGlassmeier, K.‐H., Hönisch, M., & Untiedt, J. ( 1989 ). Ground‐based and satellite observations of traveling magnetospheric convection twin vortices. Journal of Geophysical Research, 94, 2520 – 2528. https://doi.org/10.1029/JA094iA03p02520
dc.identifier.citedreferenceGlocer, A., Fok, M., Meng, X., Toth, G., Buzulukova, N., Chen, S., & Lin, K. ( 2013 ). CRCM + BATS‐R‐US two‐way coupling. Journal of Geophysical Research: Space Physics, 118, 1635 – 1650. https://doi.org/10.1002/jgra.50221
dc.identifier.citedreferenceHeelis, R. A., Lowell, J. K., & Spiro, R. W. ( 1982 ). A model of the high‐latitude ionospheric convection pattern. Journal of Geophysical Research, 87, 6339 – 6345. https://doi.org/10.1029/JA087iA08p06339
dc.identifier.citedreferenceHuang, C. Y.‐Y., Huang, Y., Su, Y.‐J., Sutton, E. K., Hairston, M. R., & Coley, W. R. ( 2016 ). Ionosphere‐thermosphere response to solar wind forcing during magnetic storms. Journal of Space Weather Space Climate, 6. https://doi.org/10.1051/swsc/2015041
dc.identifier.citedreferenceJacobsen, K. S., & Andalsvik, Y. L. ( 2016 ). Overview of the 2015 St. Patrick’s storm and its consequences for RTK and PPP positioning in Norway. Journal of Space Weather Space Climate, 6, A9. https://doi.org/10.1051/swsc/2016004
dc.identifier.citedreferenceJohnson, E. S., & Heelis, R. A. ( 2005 ). Characteristics of ion velocity structure at high latitudes during steady southward interplanetary magnetic field conditions. Journal of Geophysical Research, 110, A12301. https://doi.org/10.1029/2005JA011130
dc.identifier.citedreferenceKamide, Y., Akasofu, S.‐I., & Brekke, A. ( 1976 ). Ionospheric currents obtained from the Chatanika radar and ground magnetic perturbations at the auroral latitudes. Planetary and Space Science, 24, 193 – 201. https://doi.org/10.1016/0032‐0633(76)90016‐7
dc.identifier.citedreferenceKataoka, R., Fukunishi, H., Fujita, S., Tanaka, T., & Itonaga, M. ( 2004 ). Transient response of the Earth’s magnetosphere to a localized density pulse in the solar wind: Simulation of traveling convection vortices. Journal of Geophysical Research, 109, A03204. https://doi.org/10.1029/2003JA010287
dc.identifier.citedreferenceKataoka, R., Fukunishi, H., & Lanzerotti, L. J. ( 2003 ). Statistical identification of solar wind origins of magnetic impulse events. Journal of Geophysical Research, 108 ( A12 ), 1436. https://doi.org/10.1029/2003JA010202
dc.identifier.citedreferenceKataoka, R., Shiota, D., Kilpua, E., & Keika, K. ( 2015 ). Pileup accident hypothesis of magnetic storm on 17 March 2015. Geophysical Research Letters, 42, 5155 – 5161. https://doi.org/10.1002/2015GL064816
dc.identifier.citedreferenceKeiling, A., Angelopoulos, V., Runov, A., Weygand, J., Apatenkov, S. V., Mende, S., et al. ( 2009 ). Substorm current wedge driven by plasma flow vortices: THEMIS observations. Journal of Geophysical Research, 114, A00C22. https://doi.org/10.1029/2009JA014114
dc.identifier.citedreferenceKim, H., Clauer, C. R., Engebretson, M. J., Matzka, J., Sibeck, D. G., Singer, H. J., et al. ( 2015 ). Conjugate observations of traveling convection vortices associated with transient events at the magnetopause. Journal of Geophysical Research: Space Physics, 120, 2015 – 2035. https://doi.org/10.1002/2014JA020743
dc.identifier.citedreferenceKim, H., Lessard, M. R., Jones, S. L., Lynch, K. A., Fernandes, P. A., Aruliah, A. L., et al. ( 2017 ). Simultaneous observations of traveling convection vortices: Ionosphere‐thermosphere coupling. Journal of Geophysical Research: Space Physics, 122, 4943 – 4959. https://doi.org/10.1002/2017JA023904
dc.identifier.citedreferenceKivelson, M. G., & Southwood, D. J. ( 1991 ). Ionospheric traveling convection vortex generation by solar wind buffeting of the magnetosphere. Journal of Geophysical Research, 96, 1661 – 1667. https://doi.org/10.1029/90JA01805
dc.identifier.citedreferenceKnipp, D. J., Tobiska, W. K., & Emery, B. A. ( 2004 ). Direct and indirect thermospheric heating sources for solar cycles 21–23. Solar Physics, 224 ( 1‐2 ), 495 – 505. https://doi.org/10.1007/s11207-005%206393-4
dc.identifier.citedreferenceLanzerotti, L. J., Konik, R. M., Wolfe, A., Venkatesan, D., & Maclennan, C. G. ( 1991 ). Cusp latitude magnetic impulse events: 1. Occurrence statistics. Journal of Geophysical Research, 96, 14,009 – 14,022. https://doi.org/10.1029/91JA00567
dc.identifier.citedreferenceLiu, J., Wang, W., Burns, A., Yue, X., Zhang, S., Zhang, Y., & Huang, C. ( 2016 ). Profiles of ionospheric storm‐enhanced density during the 17 March 2015 great storm. Journal of Geophysical Research: Space Physics, 121, 727 – 744. https://doi.org/10.1002/2015JA021832
dc.identifier.citedreferenceMatsushita, S., & Xu, W.‐Y. ( 1982 ). Equivalent ionospheric current systems representing solar daily variations of the polar geomagnetic field. Journal of Geophysical Research, 87, 8241 – 8254. https://doi.org/10.1029/JA087iA10p08241
dc.identifier.citedreferenceMotoba, T., Kikuchi, T., Okuzawa, T., & Yumoto, K. ( 2003 ). Dynamical response of the magnetosphere‐ionosphere system to a solar wind dynamic pressure oscillation. Journal of Geophysical Research, 108 ( A5 ), 1206. https://doi.org/10.1029/2002JA009696
dc.identifier.citedreferenceNewell, P. T., Sotirelis, T., Ruohoniemi, J. M., Carbary, J. F., Liou, K., Skura, J. P., et al. ( 2002 ). OVATION: Oval variation, assessment, tracking, intensity and online nowcasting. Annales Geophysicae, 20 ( 7 ), 1039 – 1047. https://doi.org/10.5194/angeo‐20‐1039‐2002
dc.identifier.citedreferenceNishida, A. ( 1964 ). Ionospheric screening effect and storm sudden commencement. Journal of Geophysical Research, 69, 1861 – 1874. https://doi.org/10.1029/JZ069i009p01861
dc.identifier.citedreferenceOliveira, D. M., Zesta, E., Schuck, P. W., & Sutton, E. K. ( 2017 ). Thermosphere global time response to geomagnetic storms caused by coronal mass ejections. Journal of Geophysical Research: Space Physics, 122 ( 10 ), 10,762 – 10,782. https://doi.org/10.1002/2017JA024006
dc.identifier.citedreferenceOzturk, D. S., Zou, S., & Slavin, J. A. ( 2017 ). IMF B y effects on ground magnetometer response to increased solar wind dynamic pressure derived from global MHD simulations. Journal of Geophysical Research, 122, 5028 – 5042. https://doi.org/10.1002/2017JA023903
dc.identifier.citedreferencePowell, K. G. ( 1994 ). An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension), AD‐280296, NASA‐CR‐194902, NAS 1.26:194902, ICASE 94–24, NASA. Retrieved from: ntrs.nasa.gov/search.jsp?R=19940028527
dc.identifier.citedreferencePowell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I., & De Zeeuw, D. L. ( 1999 ). A solution adaptive upwind scheme for ideal magnetohydrodynamics. Journal of Computational Physics, 154 ( 2 ), 284 – 309. https://doi.org/10.1006/jcph.1999.6299
dc.identifier.citedreferenceRichmond, A. D., Ridley, E. C., & Roble, R. G. ( 1992 ). Thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophysical Research Letters, 19, 601 – 604. https://doi.org/10.1029/92GL00401
dc.identifier.citedreferenceRidley, A. J., De Zeeuw, D. L., & Rastätter, L. ( 2016 ). Rating global magnetosphere model simulations through statistical data‐model comparisons. Space Weather, 14, 819 – 834. https://doi.org/10.1002/2016SW001465
dc.identifier.citedreferenceRidley, A. J., Deng, Y., & Toth, G. ( 2006 ). The global ionosphere‐thermosphere model (GITM). Journal of Atmospheric and Solar ‐ Terrestrial Physics, 68, 839 – 864.
dc.identifier.citedreferenceRidley, A. J., Gombosi, T. I., & De Zeeuw, D. L. ( 2004 ). Ionospheric control of the magnetospheric configuration: Conductance. Annales Geophysicae, 22 ( 2 ), 567 – 584. https://doi.org/10.5194/angeo‐22‐567‐2004
dc.identifier.citedreferenceRussell, C. T., & Ginskey, M. ( 1995 ). Sudden impulses at subauroral latitudes: Response for northward interplanetary magnetic field. Journal of Geophysical Research, 100, 23,695 – 23,702. https://doi.org/10.1029/95JA02495
dc.identifier.citedreferenceSamsonov, A. A., & Sibeck, D. G. ( 2013 ). Large‐scale flow vortices following a magnetospheric sudden impulse. Journal of Geophysical Research: Space Physics, 118, 3055 – 3064. https://doi.org/10.1002/jgra.50329
dc.identifier.citedreferenceSamsonov, A. A., Sibeck, D. G., Zolotova, N. V., Biernat, H. K., Chen, S.‐H., Rastaetter, L., et al. ( 2011 ). Propagation of a sudden impulse through the magnetosphere initiating magnetospheric Pc5 pulsations. Journal of Geophysical Research, 116, A10216. https://doi.org/10.1029/2011JA016706
dc.identifier.citedreferenceSchunk, R., & Nagy, A. ( 2009 ). Ionospheres: Physics, plasma physics, and chemistry. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511635342
dc.identifier.citedreferenceSchunk, R. W., & Nagy, A. F. ( 1978 ). Electron temperatures in the F region of the ionosphere: Theory and observations. Reviews of Geophysics, 16, 355 – 399. https://doi.org/10.1029/RG016i003p00355
dc.identifier.citedreferenceSchunk, R. W., Zhu, L., & Sojka, J. J. ( 1994 ). Ionospheric response to traveling convection twin vortices. Geophysical Research Letters, 21, 1759 – 1762. https://doi.org/10.1029/94GL01059
dc.identifier.citedreferenceShi, Y., Zesta, E., Connor, H. K., Su, Y.‐J., Sutton, E. K., Huang, C. Y., et al. ( 2017 ). High‐latitude thermosphere neutral density response to solar wind dynamic pressure enhancement. Journal of Geophysical Research: Space Physics, 122, 11,559 – 11,578. https://doi.org/10.1002/2017JA023889
dc.identifier.citedreferenceSlinker, S. P., Fedder, J. A., Emery, B. A., Baker, K. B., Lummerzheim, D., Lyon, J. G., & Rich, F. J. ( 1999 ). Comparison of global MHD simulations with AMIE simulations for the events of May 19–20, 1996. Journal of Geophysical Research, 104, 28,379 – 28,395. https://doi.org/10.1029/1999JA900403
dc.identifier.citedreferenceSlinker, S. P., Fedder, J. A., Hughes, W. J., & Lyon, J. G. ( 1999 ). Response of the ionosphere to a density pulse in the solar wind: Simulation of traveling convection vortices. Geophysical Research Letters, 26, 3549 – 3552. https://doi.org/10.1029/1999GL010688
dc.identifier.citedreferenceSmith, E. J., Slavin, J. A., Zwickl, R. D., & Bame, S. J. ( 1986 ). Shocks and storm sudden commencements, solar wind‐magnetosphere coupling. Tokyo: Terra Scientific Publishing Company. https://doi.org/10.1007/978‐94‐009‐4722‐1_25
dc.identifier.citedreferenceSojka, J. J., Schunk, R. W., Bowline, M. D., Chen, J., Slinker, S., & Fedder, J. ( 1997 ). Driving a physical ionospheric model with a magnetospheric MHD model. Journal of Geophysical Research, 102, 22,209 – 22,220. https://doi.org/10.1029/97JA01650
dc.identifier.citedreferenceTamao, T. ( 1964 ). The structure of three‐dimensional hydromagnetic waves in a uniform cold plasma. Journal of Geomagnetism and Geoelectricity, 16 ( 2 ), 89 – 114. https://doi.org/10.5636/jgg.16.89
dc.identifier.citedreferenceTanaka, T. ( 2001 ). Interplanetary magnetic field B y and auroral conductance effects on high latitude ionospheric convection patterns. Journal of Geophysical Research, 106, 24,505 – 24,516. https://doi.org/10.1029/2001JA900061
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.