Show simple item record

Testing cross‐phenotype effects of rare variants in longitudinal studies of complex traits

dc.contributor.authorRudra, Pratyaydipta
dc.contributor.authorBroadaway, K. Alaine
dc.contributor.authorWare, Erin B.
dc.contributor.authorJhun, Min A.
dc.contributor.authorBielak, Lawrence F.
dc.contributor.authorZhao, Wei
dc.contributor.authorSmith, Jennifer A.
dc.contributor.authorPeyser, Patricia A.
dc.contributor.authorKardia, Sharon L.R.
dc.contributor.authorEpstein, Michael P.
dc.contributor.authorGhosh, Debashis
dc.date.accessioned2018-06-11T18:00:30Z
dc.date.available2019-08-01T19:53:23Zen
dc.date.issued2018-06
dc.identifier.citationRudra, Pratyaydipta; Broadaway, K. Alaine; Ware, Erin B.; Jhun, Min A.; Bielak, Lawrence F.; Zhao, Wei; Smith, Jennifer A.; Peyser, Patricia A.; Kardia, Sharon L.R.; Epstein, Michael P.; Ghosh, Debashis (2018). "Testing cross‐phenotype effects of rare variants in longitudinal studies of complex traits." Genetic Epidemiology 42(4): 320-332.
dc.identifier.issn0741-0395
dc.identifier.issn1098-2272
dc.identifier.urihttps://hdl.handle.net/2027.42/144294
dc.description.abstractMany gene mapping studies of complex traits have identified genes or variants that influence multiple phenotypes. With the advent of next‐generation sequencing technology, there has been substantial interest in identifying rare variants in genes that possess cross‐phenotype effects. In the presence of such effects, modeling both the phenotypes and rare variants collectively using multivariate models can achieve higher statistical power compared to univariate methods that either model each phenotype separately or perform separate tests for each variant. Several studies collect phenotypic data over time and using such longitudinal data can further increase the power to detect genetic associations. Although rare‐variant approaches exist for testing cross‐phenotype effects at a single time point, there is no analogous method for performing such analyses using longitudinal outcomes. In order to fill this important gap, we propose an extension of Gene Association with Multiple Traits (GAMuT) test, a method for cross‐phenotype analysis of rare variants using a framework based on the distance covariance. The approach allows for both binary and continuous phenotypes and can also adjust for covariates. Our simple adjustment to the GAMuT test allows it to handle longitudinal data and to gain power by exploiting temporal correlation. The approach is computationally efficient and applicable on a genome‐wide scale due to the use of a closed‐form test whose significance can be evaluated analytically. We use simulated data to demonstrate that our method has favorable power over competing approaches and also apply our approach to exome chip data from the Genetic Epidemiology Network of Arteriopathy.
dc.publisherJohn Wiley & Sons
dc.subject.otherpleiotropy
dc.subject.otherlongitudinal data
dc.subject.othercomplex human traits
dc.subject.othergene mapping
dc.subject.otherrare variant
dc.titleTesting cross‐phenotype effects of rare variants in longitudinal studies of complex traits
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144294/1/gepi22121_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144294/2/gepi22121.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144294/3/gepi22121-sup-0001-SuppMat.pdf
dc.identifier.doi10.1002/gepi.22121
dc.identifier.sourceGenetic Epidemiology
dc.identifier.citedreferenceSun, J., Oualkacha, K., Forgetta, V., Zheng, H. F., Richards, J. B., Ciampi, A., & Greenwood, C. M. ( 2016 ). A method for analyzing multiple continuous phenotypes in rare variant association studies allowing for flexible correlations in variant effects. European Journal of Human Genetics, 24 ( 9 ), 1344 – 1351.
dc.identifier.citedreferenceGalesloot, T. E., Van Steen, K., Kiemeney, L. A., Janss, L. L., & Vermeulen, S. H. ( 2014 ). A comparison of multivariate genome‐wide association methods. PloS One, 9 ( 4 ), e95923.
dc.identifier.citedreferenceGottesman, R. F., Schneider, A. L., Albert, M., Alonso, A., Bandeen‐Roche, K., Coker, L., … Sharrett, A. R. ( 2014 ). Midlife hypertension and 20‐year cognitive change: The atherosclerosis risk in communities neurocognitive study. JAMA Neurology, 71 ( 10 ), 1218 – 1227.
dc.identifier.citedreferenceGretton, A., Fukumizu, K., Teo, C. H., Song, L., Schölkopf, B., & Smola, A. J. ( 2007 ). A kernel statistical test of Independence. Advances in Neural Information Processing Systems, 20, 585 – 592.
dc.identifier.citedreferenceHe, Z., Zhang, M., Lee, S., Smith, J. A., Kardia, S. L., Diez Roux, A. V., & Mukherjee, B. ( 2016 ). Set‐based tests for gene‐environment interaction in longitudinal studies. Journal of the American Statistical Association, 966 – 978. https://doi.org/10.1080/01621459.2016.1252266
dc.identifier.citedreferenceHottenga, J. J., Boomsma, D. I., Kupper, N., Posthuma, D., Snieder, H., Willemsen, G., & de Geus, E. J. ( 2005 ). Heritability and stability of resting blood pressure. Twin Research and Human Genetics, 8 ( 05 ), 499 – 508.
dc.identifier.citedreferenceHua, W. Y., & Ghosh, D. ( 2015 ). Equivalence of kernel machine regression and kernel distance covariance for multidimensional phenotype association studies. Biometrics, 71 ( 3 ), 812 – 820.
dc.identifier.citedreferenceKowarik, A., & Templ, M. ( 2016 ). Imputation with r package vim. Journal of Statistical Software, 74 ( 7 ), 1 – 16.
dc.identifier.citedreferenceKwee, L. C., Liu, D., Lin, X., Ghosh, D., & Epstein, M. P. ( 2008 ). A powerful and flexible multilocus association test for quantitative traits. American Journal of Human Genetics, 82 ( 2 ), 386 – 397.
dc.identifier.citedreferenceLambert, J. C., Ibrahim‐Verbaas, C. A., Harold, D., Naj, A. C., Sims, R., Bellenguez, C., … Grenier‐Boley, B. ( 2013 ). Meta‐analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nature Genetics, 45 ( 12 ), 1452 – 1458.
dc.identifier.citedreferenceLange, L. A., Lange, E. M., Bielak, L. F., Langefeld, C. D., Kardia, S. L., Royston, P., & Peyser, P. A. ( 2002 ). Autosomal genome‐wide scan for coronary artery calcification loci in sibships at high risk for hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 22 ( 3 ), 418 – 423.
dc.identifier.citedreferenceLees, C., Barrett, J., Parkes, M., & Satsangi, J. ( 2011 ). New IBD genetics: Common pathways with other diseases. Gut, 60 ( 12 ), 1739 – 1753.
dc.identifier.citedreferenceLiu, F., Van Der Lijn, F., Schurmann, C., Zhu, G., Chakravarty, M. M., Hysi, P. G., … Van Der Lugt, A. ( 2012 ). A genome‐wide association study identifies five loci influencing facial morphology in Europeans. PLoS Genet, 8 ( 9 ), e1002932.
dc.identifier.citedreferenceMaier, R., Moser, G., Chen, G. B., Ripke, S., Absher, D., Agartz, I., … Anney, R. ( 2015 ). Joint analysis of psychiatric disorders increases accuracy of risk prediction for schizophrenia, bipolar disorder, and major depressive disorder. American Journal of Human Genetics, 96 ( 2 ), 283 – 294.
dc.identifier.citedreferenceMartirosyan, N. L., Patel, A. A., Carotenuto, A., Kalani, M. Y. S., Belykh, E., Walker, C. T., & Theodore, N. ( 2016 ). Genetic alterations in intervertebral disc disease. Frontiers in Surgery, 3, 59. https://doi.org/10.3389/fsurg.2016.00059
dc.identifier.citedreferenceMorris, A. P., & Zeggini, E. ( 2010 ). An evaluation of statistical approaches to rare variant analysis in genetic association studies. Genetic Epidemiology, 34 ( 2 ), 188 – 193.
dc.identifier.citedreferenceNettiksimmons, J., Tranah, G., Evans, D. S., Yokoyama, J. S., & Yaffe, K. ( 2016 ). Gene‐based aggregate SNP associations between candidate AD genes and cognitive decline. Age, 38 ( 2 ), 1 – 10.
dc.identifier.citedreferenceNguyen, T. Q. N., Saitoh, M., Trinh, H. T., Doan, N. M. T., Mizuno, Y., Seki, M., & Mizuguchi, M. ( 2016 ). Truncation and microdeletion of EVC/EVC2 with missense mutation of EFCAB7 in Ellis‐van Creveld syndrome. Congenital Anomalies, 56 ( 5 ), 209 – 216.
dc.identifier.citedreferenceSchaid, D. J. ( 2010 ). Genomic similarity and kernel methods II: Methods for genomic information. Human Heredity, 70 ( 2 ), 132 – 140.
dc.identifier.citedreferenceSchaid, D. J., Tong, X., Larrabee, B., Kennedy, R. B., Poland, G. A., & Sinnwell, J. P. ( 2016 ). Statistical methods for testing genetic Pleiotropy. Genetics, 204 ( 2 ), 483 – 497.
dc.identifier.citedreferenceSchork, N. J., & Zapala, M. A. ( 2012 ). Statistical properties of multivariate distance matrix regression for high‐dimensional data analysis. Frontiers in Genetics, 3, 190. https://doi.org/10.3389/fgene.2012.00190
dc.identifier.citedreferenceSzé kely, G. J., Rizzo, M. L., & Bakirov, N. K., et al. ( 2007 ). Measuring and testing dependence by correlation of distances. Annals of Statistics, 35 ( 6 ), 2769 – 2794.
dc.identifier.citedreferenceTorgo, L., & Torgo, L. ( 2011 ). Data mining with R: Learning with case studies. Boca Raton, FL: Chapman & Hall/CRC.
dc.identifier.citedreferenceTzeng, J. Y., Zhang, D., Chang, S. M., Thomas, D. C., & Davidian, M. ( 2009 ). Gene‐trait similarity regression for multimarker‐based association analysis. Biometrics, 65 ( 3 ), 822 – 832.
dc.identifier.citedreferenceVattikuti, S., Guo, J., & Chow, C. C. ( 2012 ). Heritability and genetic correlations explained by common SNPs for metabolic syndrome traits. PLoS Genet, 8 ( 3 ), e1002637.
dc.identifier.citedreferenceWang, Y., Liu, A., Mills, J. L., Boehnke, M., Wilson, A. F., Bailey‐Wilson, J. E., & Fan, R. ( 2015 ). Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models. Genetic Epidemiology, 39 ( 4 ), 259 – 275.
dc.identifier.citedreferenceWild, P. S., Zeller, T., Schillert, A., Szymczak, S., Sinning, C. R., Deiseroth, A., … Bickel, C. ( 2011 ). A genome‐wide association study identifies LIPA as a susceptibility gene for coronary artery disease clinical Perspective. Circulation: Cardiovascular Genetics, 4 ( 4 ), 403 – 412.
dc.identifier.citedreferenceWu, B., & Pankow, J. S. ( 2016 ). Sequence kernel association test of multiple continuous phenotypes. Genetic Epidemiology, 40 ( 2 ), 91 – 100.
dc.identifier.citedreferenceWu, M. C., Lee, S., Cai, T., Li, Y., Boehnke, M., & Lin, X. ( 2011 ). Rare‐variant association testing for sequencing data with the sequence kernel association test. American Journal of Human Genetics, 89 ( 1 ), 82 – 93.
dc.identifier.citedreferenceYuan, D., Huang, J., Yuan, X., Zhao, J., & Jiang, W. ( 2013 ). Zinc finger protein 667 expression is upregulated by cerebral ischemic preconditioning and protects cells from oxidative stress. Biomedical Reports, 1, 534 – 538.
dc.identifier.citedreferenceZarkesh, M., Daneshpour, M. S., Faam, B., Fallah, M. S., Hosseinzadeh, N., Guity, K., & Azizi, F. ( 2012 ). Heritability of the metabolic syndrome and its components in the Tehran lipid and glucose study (TLGS). Genetics Research, 94 ( 06 ), 331 – 337.
dc.identifier.citedreferenceZeger, S. L., & Liang, K. Y. ( 1986 ). Longitudinal data analysis for discrete and continuous outcomes. Biometrics, 42 ( 1 ), 121 – 130.
dc.identifier.citedreferenceAllison, D. B., Thiel, B., Jean, P. S., Elston, R. C., Infante, M. C., & Schork, N. J. ( 1998 ). Multiple phenotype modeling in gene‐mapping studies of quantitative traits: Power advantages. American Journal of Human Genetics, 63 ( 4 ), 1190 – 1201.
dc.identifier.citedreferenceAslibekyan, S., An, P., Frazier‐Wood, A., Kabagambe, E., Irvin, M., Straka, R., … Ordovas, J. M. ( 2013 ). Preliminary evidence of genetic determinants of adiponectin response to fenofibrate in the genetics of lipid lowering drugs and diet network. Nutrition, Metabolism and Cardiovascular Diseases, 23 ( 10 ), 987 – 994.
dc.identifier.citedreferenceBroadaway, K. A., Cutler, D. J., Duncan, R., Moore, J. L., Ware, E. B., Jhun, M. A., … Kardia, S. L. ( 2016 ). A statistical approach for testing cross‐phenotype effects of rare variants. American Journal of Human Genetics, 98 ( 3 ), 525 – 540.
dc.identifier.citedreferenceDaniels, P. R., Kardia, S. L., Hanis, C. L., Brown, C. A., Hutchinson, R., Boerwinkle, E., & Turner, S. T. ( 2004 ). Familial aggregation of hypertension treatment and control in the Genetic Epidemiology Network of Arteriopathy (GENOA) study. American Journal of Medicine, 116 ( 10 ), 676 – 681.
dc.identifier.citedreferenceDavies, R. B. ( 1980 ). Algorithm AS 155: The distribution of a linear combination of χ 2 random variables. Journal of the Royal Statistical Society. Series C (Applied Statistics), 29 ( 3 ), 323 – 333.
dc.identifier.citedreferenceFan, R., Zhang, Y., Albert, P. S., Liu, A., Wang, Y., & Xiong, M. ( 2012 ). Longitudinal association analysis of quantitative traits Longitudinal association analysis of quantitative traits. Genetic Epidemiology, 36 ( 8 ), 856 – 869.
dc.identifier.citedreferenceFitzmaurice, G. M., Laird, N. M., & Ware, J. H. ( 2012 ). Applied longitudinal analysis (Vol. 998). Hoboken, NJ: John Wiley & Sons.
dc.identifier.citedreferenceFurlotte, N. A., Eskin, E., & Eyheramendy, S. ( 2012 ). Genome‐wide association mapping with longitudinal data. Genetic Epidemiology, 36 ( 5 ), 463 – 471.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.